ответ:Трапеция равнобедренная,а это значит,что боковые стороны трапеции равны между собой,и углы при каждом из оснований тоже равны между собой,при меньшем основании по 120 градусов каждый,а при бОльшем
180-120=60 градусов каждый
Из тупых углов трапеции(а они находятся при малом основании) на бОльшее основание опускаем две высоты,и отсекаем от трапеции два прямоугольных треугольника,которые равны между собой по 2 признаку равенства прямоугольных треугольников-по катету и прилежащему ему острому углу
Высота-это перпендикуляр и от бОльшего основания с двух сторон были отсечены отрезки(они же катеты прямоугольных треугольников),равные
(6-2):2=2 см
Катет,величиной 2 см лежит против угла 30 градусов
180-(90+60=30 градусов
и поэтому гипотенуза (она же-боковая сторона трапеции)в два раза больше этого катета
2•2=4 см
Периметр трапеции равен
Р=2+6+4•2=16 см
Объяснение:
А(-3; 1) В(1; -2) С(-1; 0)
1) Координаты вектора АВ
АВх = хВ - хА = 1 + 3 = 4
АВу = уВ - уА = -2 - 1 = -3
АВ(4; -3)
Координаты вектора АС
АСх = хС - хА = -1 + 3 = 2
АСу = уС - уА = 0 - 1 = -1
АС(2; -1)
2) Модуль вектора АВ
|AB| = √(АВх² + АВy²) = √(4² + (-3)²) = 5
Модуль вектора АC
|AC| = √(АCх² + АCy²) = √(2² + (-1)²) = √5
3) Cкалярное произведение векторов АВ и АС
АВ · АС = АВх · АСх + АВу · АСу = 4 · 2 + (-3 · (-1)) = 11
4) Косину угла между векторами АВ и АС
cos α = AB · AC : (|AB| · |AC|) = 11 : (5√5)= (11√5) /25
ВС+МК+АМ+КD,где АМ=КD,значит уравнение такое
44=х+х+12+12
Получаем 2х=20,где х=10 см=
ВСАD=МК+12+12АD=10+12+12=34 см