Данная окружность имеет центр в точке O(-2;1) и радиус √25=5. Чтобы доказать, что AB - хорда, нужно доказать, что точки A и B лежат на окружности.
Данная окружность содержит все точки плоскости, расстояние от которых до точки O равно 5. По формуле расстояния между двумя точками, OA=√(-2+2)²+(6-1)²=√25=5, значит, OA=5 и A лежит на окружности. Аналогично, OB=√(-2+6)²+(4-1)²=√16+9=5, тогда точка B также лежит на окружности. Значит, AB - хорда, что и требовалось.
Рассмотрим первый треугольник. проведем к основанию высоту, которая так же является медианой и биссектрисой в равнобедренном треугольнике. Получим 2 прямоугольных треугольника.Рассмотрим любой из двух этих треугольников. Известны гипотенуза и меньший катет, найдём больший катет ( он же высота, проведённая к основанию). x^2 = 225-81 = 144 => x = 12 см. В итоге видим, что высота второго треугольника больше первого в 2 раза. Тогда ребра и основание равны соответственно 30 и 36 см. Периметр равен 96 см.
Рассмотрим первый треугольник. проведем к основанию высоту, которая так же является медианой и биссектрисой в равнобедренном треугольнике. Получим 2 прямоугольных треугольника.Рассмотрим любой из двух этих треугольников. Известны гипотенуза и меньший катет, найдём больший катет ( он же высота, проведённая к основанию). x^2 = 225-81 = 144 => x = 12 см. В итоге видим, что высота второго треугольника больше первого в 2 раза. Тогда ребра и основание равны соответственно 30 и 36 см. Периметр равен 96 см.
Данная окружность содержит все точки плоскости, расстояние от которых до точки O равно 5. По формуле расстояния между двумя точками, OA=√(-2+2)²+(6-1)²=√25=5, значит, OA=5 и A лежит на окружности. Аналогично, OB=√(-2+6)²+(4-1)²=√16+9=5, тогда точка B также лежит на окружности. Значит, AB - хорда, что и требовалось.