Теорема d3. В равнобедренном треугольнике высоты, опущенные к боковым сторонам, равны.
Доказательство: Пусть ABC - равнобедренный треугольник (AC = BC), AK и BL - его высоты. Тогда углы ABL и KAB равны, так как углы ALB и AKB прямые, а углы LAB и ABK равны как углы при основании равнобедренного треугольника. Следовательно, треугольники ALB и AKB равны по второму признаку равенства треугольников: у них общая сторона AB, углы KAB и LBA равны по вышесказанному, а углы LAB и KBA равны как углы при основании равнобедренного треугольника. Если треугольники равны, их стороны AK и BL тоже равны. Что и требовалось доказать
Объяснение:
Теорема d3. В равнобедренном треугольнике высоты, опущенные к боковым сторонам, равны.
Доказательство: Пусть ABC - равнобедренный треугольник (AC = BC), AK и BL - его высоты. Тогда углы ABL и KAB равны, так как углы ALB и AKB прямые, а углы LAB и ABK равны как углы при основании равнобедренного треугольника. Следовательно, треугольники ALB и AKB равны по второму признаку равенства треугольников: у них общая сторона AB, углы KAB и LBA равны по вышесказанному, а углы LAB и KBA равны как углы при основании равнобедренного треугольника. Если треугольники равны, их стороны AK и BL тоже равны.
ЧТД
Вершина В у этих равных треугольников общая,∠D=∠F, сторона АD=CF. При наложении этих равных треугольников друг на друга вершина С совпадет с вершиной А, вершина D c F. Сторона DB=BF.
При повороте стороны CF на произвольную величину градусов ∠DBF может принимать разные значения, (см. рисунок). Поэтому, хотя DB=BF, угол DBF может быть тупым или острым ≠ 60°, и тогда ∆ DBF - равнобедренный, быть равным 60°, тогда треугольник DBF равносторонний, или BF может быть продолжением DB, тогда ∠DBF будет развернутым и треугольник DBF не получится.
ответ г.- определить невозможно.