Сумма углов любого треугольника равна 180° 1) 180° - (48° + 48°) = 84° В данном треугольнике величины углов равны 48°, 48° и 84°, каждый из них острый, т.к. меньше 90°, значит, этот треугольник - остроугольный.
2) 180° - (25° + 65°) = 90° В данном треугольнике величины углов равны 25°, 65° и 90°, один из них прямой, равный 90°, значит, этот треугольник - прямоугольный.
3)180° - 85° = 95° В данном треугольнике величины двух углов равны 85°, а величина третьего - 95° больше 90°, значит, это угол тупой и следовательно этот треугольник - тупоугольный. ответ: А - 2; Б - 1; В - 3
Начертите прямоугольный треугольник и опишите вокруг него окружность. Любой прямоугольный треугольник опирается на диаметр описанной окружности, т.е. его гипотенуза = диаметру окружности. Следовательно, медиана, которая делит гипотенузу пополам, будет падать на середину диаметра - т.е. центр окружности. Половины диаметра - это радиусы окружности. Т.к. вершина прямого угла треугольника лежит на окружности, а медиана падает в её центр, значит медиана - это радиус окружности. Радиус одинаков по всей окружности. А если медиана - это радиус, и половины гипотенузы - тоже радиусы, делаем вывод, что медиана равна половине гипотенузы. Т.е. гипотенуза в целом будет равна 2-м медианам: 8+8=16.
180-90-35=55