Рассмотрим диагональное сечение призмы, оно будет представлять из себя прямоугольник вписанный в окружность радиуса R, так как диагональ призмы будет являться его диаметром , то D = 2R
угол, который образует диагональ призмы с боковой гранью, равен углу, который образует диагональ призмы с диагональю боковой грани (так как последняя является ее ортогональной проекцией)
теперь рассмотрим сечение призмы плоскостью, проходящей черз диагональ призмы и диагональ боковой грани призмы : это сечение - прям. треугольник. находим диагональ боковой грани: d = cosα * D = 2R* cosα
находим ребро основания из того же прямоуг. треугольника: l = sinα * D = 2R * sinα
высота нашей призмы равна боковой грани, а ее мы можем найти пот. Пифагора, зная d и l: h = √ (d² - l²) =√(4R² *cos²α - 4R²* sin²α) = 2R√(cos²α - sin²α)
Пока оформляла решение, ответ уже дали, и т.к. оно несколько отличается. даю вариант решения этой задачи. В прямой призме в основании лежит прямоугольный равнобедренный треугольник. Найти площадь сечения, проходящего через катет нижнего основания и середину гипотенузы верхнего, если расстояние между основаниями 4 и равно расстоянию от вершины нижнего основания до плоскости сечения. Сделаем рисунок призмы. Сечение пересекает верхнее основание призмы по прямой КМ, параллельной СВ и, следовательно, параллельной С₁В₁. Так как К - середина катета С₁А₁, прямая КМ - средняя линия треугольника А₁С₁В₁. С₁К=КА₁ Опустим на АС перпендикуляр КН. Он равен высоте призмы. Прямоугольники СС₁КН и АА₁КН равны, т.к. имеют равные стороны. ⇒ их диагонали СК и АК также равны. ⇒ Треугольник СКА - равнобедренный с высотой КН. АТ - также является высотой этого равнобедренного треугольника, проведенной к его боковой стороне КС ( расстояние от точки до плоскости есть перпендикуляр ) и по условию равна высоте призмы. ⇒ КН=АТ=4 Если высоты равнобедренного треугольника, проведенные к основанию и боковой стороне, равны, этот треугольник - равносторонний и все углы в нем равны 60° АС=СВ=АК=СК АС=СВ=КН:sin (60°)=8:√3 КМ=СВ:2=4:√3 СК=АС=8:√3 и перпендикулярна СВ ( по теореме о трех перпендикулярах) СКМВ - прямоугольная трапеция. Площадь трапеции равна произведению высоты (КС) на полусумму оснований. (КМ+СВ)=8:√3 + 4:√3 =12:√3 =4√3 S (СКМВ)=(8:√3)*(4 √3):2=16 единиц площади) ---------- [email protected]
Если х - меньший из углов, то 8х - больший. Их сумма по определению равна 180 гр.
х+8х=180
9х=180
х=20, 8х = 160
ответ: 20 гр; 160 гр.