2) Площадь основания, т.е. S(ромба) = а^2 * sin угла между смежными сторонами ==> S(ромба) = 5^2 * sin 30 = 25 / 2 = 12.5 (единиц площади) ==> две площади основания, т.е. 2*S(ромба) = 25 (единиц площади)
Расстояние до плоскости определяется перпендикуляром рисунок такой от точки А опускаем вниз 10 см и ставим точку А1, от точки В поднимаем 6 см вверх получаем точку В1, соединяем А1 и В1 - это и будет плоскость наша, она будет пересекать отрезок СВ в точке О. от точки С опускаем к плоскости тоже перпендикуляр и ставим точку С1. по вертикальному и прямому углу доказываем подобие треугольников АОА1 и ВОВ1, по известным сторонам выводим коэфициент подобия 0,6.
тоже по прямому и вертикальному доказываем подобие треугольников ВОВ1 и СОС1 если АО=х , то ОВ=0,6х, а АВ=1,6х, АС=0,8х, СО=х-0,8х=0,2х коэффециент подобия СОС1 к ВОВ1 =1/3 6/3=2=СС1 ответ : 2 см
2) градусная мера острого угла может быть равной 91∘ НЕВЕРНО острый угол больше 0° и меньше 90°
3) любой острый угол меньше тупого угла ВЕРНО
4) градусную меру угла можно измерить линейкой НЕВЕРНО
Непосредственно измерить линейкой градусную меру угла невозможно. Однако косвенно через формулы измерить можно. Например, с линейки можно достроить треугольник, измерить стороны и через соответствующие формулы вычислить одну из тригонометрических функций для определения градусной меры угла.
1) S(бок.) = S(полн.) - 2*S(основания)
2) Пусть боковое ребро ромба будет "а", значит а=5 (единиц расстояния)
2) Площадь основания, т.е. S(ромба) = а^2 * sin угла между смежными сторонами ==> S(ромба) = 5^2 * sin 30 = 25 / 2 = 12.5 (единиц площади) ==> две площади основания, т.е. 2*S(ромба) = 25 (единиц площади)
3) S(бок.) = 96 - 25 = 71 (единица площади)