Для начала найдем неизвестные угол и стороны ∆ АКЕ. Сумма углов треугольника 180° => угол КАЕ=180°-(54°+60°=66°
По т.синусов АЕ=АК•sin54°/sin60°. KE=AK•sin66°/sin60°
sin60°=0.8660; sin54°= 0.8090; sin66°=0.9135
AE=20•0,8090/0,8660=18,683≈18,7 см; KE=20•0,9135/0,8660=21,097≈ 21,1 см
Стороны и углы треугольника ВСD имеют те же значения, что и соответствующие углы и стороны ∆ АКЕ, но в условии не указано, какие именно элементы двух треугольников равны. Если в ∆ ВСD сторона ВС=АК, и ∠D=∠Е, то ∠В=∠А=66°,∠С=∠К=54°, ВС=20 см, ВD=AE≈18,7= см, CD=KE≈21,1 см
2X = 3Y - 1 ; X = 1,5Y - 0,5 : X^2 = 2,25Y^2 - 1,5Y + 0,25
2*( X + Y)^2 - 7*( X + Y ) + 3 = 0
2 * ( X^2 + 2XY + Y^2 ) - 7X - 7Y + 3 = 0
2X^2 + 4XY + 2Y^2 - 7X - 7Y + 3 = 0
2 * ( 2,25Y^2 - 1,5Y + 0,25 ) + 4Y*( 1,5Y - 0,5 ) + 2Y^2 - 7*( 1,5Y - 0,5) - 7Y + 3 = 0
4,5Y^2 - 3Y + 0,5 + 6Y^2 - 2Y + 2Y^2 - 10,5Y + 3,5 - 7Y + 3 = 0
Y^2 * ( 4,5 + 6 + 2 ) - Y * ( 3 + 2 + 7 + 10,5 ) + 0,5 + 3,5 + 3 = 0
12,5Y^2 - 22,5Y + 7 = 0
D = 506,25 - 4 * 12,5 * 7 = 506,25 - 350 = 156,25 ; √ D = 12,5
Y1 = ( 22,5 + 12,5 ) : 25 = 1,4
Y2 = ( 22,5 - 12,5 ) : 25 = 0,4
X = 1,5Y - 0,5
X1 = 1,5 * 1,4 - 0,5 = 1,6
X2 = 1,5 * 0,4 - 0,5 = 0,1
ответ ( 1,6 ; 1,4 ) ; ( 0,1 ; 0,4 )