Т.к. АВСД – прямоугольник, то угол В = 90 градусов. И, следовательно, биссектриса делит этот угол на два равных угла по 90/2 = 45 градусов. Поскольку угол А – прямой то угол АКВ = 180 - 90 - <АВК = 90 – 45 = 45 градусов. Таким образом, в прямоугольном треугольнике АВК острые углы равны между собой и равны 45. Следовательно, этот треугольник является равнобедренным и АВ = АК = 6,5 см. Площадь прямоугольника равна произведению его сторон. Одну стороны мы нашли, это АВ = 6,5 см. Вторая сторона АД = АК + КД = 6,5 + 3,5 = 10 см. Ну и площадь равна, как уже было сказано, АВ×АД = 6,5×10 = ? см². Думаю, Вам не сложно её вычислить
См. рисунок. АЕ=СЕ => ЕР- высота , медиана и биссектриса для равнобедр. треуг. АЕС т.е. угол АРЕ=90. АР=РС и АС=2АВ => AB=AP => треуг. BAP равнобедр. => биссектриса АЕ - высота и медиана, т.е. ВО=ОР и все углы при т.О=90 теперь, треугольники ВОЕ и РОЕ равны по сторонам ВО=ОР, ОЕ- общая и угол между ними =90,отсюда ВЕ=РЕ, отсюда треугольники АВЕ и АРЕ равны. Но т.к. угол АРЕ=90 (см. выше), тогда и АВЕ=90. Все, нашли.
Но тут можно продолжить изыскания. Мы имеем прямоугольный треугольник, у которого один катет АВ в два раза меньше гипотенузы АС. Значит, он лежит против угла в 30 градусов. Значит, наш треугольник имеет углы в 30,60 и 90 градусов.