М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
саня9999999
саня9999999
23.04.2023 03:33 •  Геометрия

Укажите номера верных утверждений: 1) образованные при пересечении двух параллельных прямых третьей накрест лежащие углы равны. 2) если биссектриса треугольника является его высотой, то этот треугольник равнобедренный. 3) треугольника со сторонами 2, 8, 11 не существует. 4) уравнением окружности с центром q(-2; -3) и радиусом 5 является уравнение (x-2)^2+(y-3)^2=25

👇
Ответ:
1 не правильный, равны ВНУТРЕННИЕ накрест лежащие углы
2 правильное
3 правильное, так как сумма двух любых сторон не больше третьей стороны
4 неправильное. (х+2)^2+(х+3)^2=25
4,6(47 оценок)
Открыть все ответы
Ответ:
кент1346
кент1346
23.04.2023
Дано: SABC - пирамида, АВ=ВС=10см, АС=12см, боковые грани образуют с основанием углы 30 градусов.
Найти: высоту SO.
Построение. К основанию треугольника АВС проведем высоту ВН, которая будет являться и медианой и биссектрисой, так как треугольник равнобедренный. Отрезок SH также является высотой, так как треугольник ASC равнобедренный. Значит, угол SHB - заданный в условии двугранный угол. Высота пирамиды проецируется на основание в точку О, являющуюся центром вписанной в треугольник АВС окружности, так как все грани пирамиды наклонены к основанию под одинаковым углом.
Решение: Рассмотрим прямоугольный треугольник OSH:
\mathrm{tg} \angle SHO= \frac{SO}{HO} \Rightarrow SO=HO\cdot \mathrm{tg} \angle SHO
Неизвестным остается отрезок НО, являющийся радиусом ранее упомянутой окружности.
Площадь треугольника равна половине произведения его основания на высоту, проведенную к основанию. С другой стороны площадь треугольника равна произведению его полупериметра на радиус вписанной окружности. Приравнивая эти площади, получим:
\frac{1}{2} \cdot AC\cdot BH= \frac{1}{2} \cdot(AB+BC+AC) \cdot OH 
\\\
AC\cdot BH= (2AB+AC) \cdot OH 
\\\
OH= \frac{AC\cdot BH}{2AB+AC}
BH найдем из треугольника АВН по теореме Пифагора, учитывая, что АН - половина АС.
BH= \sqrt{AB^2-AH^2}=\sqrt{AB^2-( \frac{AC}{2})^2 }
\\\
 BH= \sqrt{10^2-( \frac{12}{2})^2 }=8
OH= \frac{12\cdot 8}{2\cdot10+12}=3
SO=3\cdot \mathrm{tg} 30^0=3\cdot \frac{ \sqrt{3} }{3} = \sqrt{3}(sm)
ответ: \sqrt{3} см

Основание пирамиды - равнобедренный треугольник с основанием, равным 12 см, и боковой стороной, равн
4,4(17 оценок)
Ответ:
zavarinaira100
zavarinaira100
23.04.2023
Высота основания правильной треугольной пирамиды равна 6 см, а двугранный угол при стороне основания равен 45 градусов. Найти площадь поверхности пирамиды и расстояние от вершины основания до противоположной боковой грани.
Сделаем рисунок.
Основание высоты правильной треугольной пирамиды - точка пересечения высот основания, или. иначе, центр вписанной в правильный треугольник окружности. Площадь поверхности пирамиды равна сумме площадей ее основания и трех боковых граней. Площадь основания правильного треугольника находят по формуле
S=(a²√3):4
Боковые грани правильной пирамиды - равнобедренные треугольники.
Площадь боковой грани - половина произведение ее высоты на сторону основания.
S грани=аh:2
Двугранный угол при стороне основания  равен линейному углу между апофемой МН   и высотой АН основания. 
АВ=ВС=АС=АН:sin (60º)=6:[(√3):2]=4√3
S осн=(4√3)²√3):4=(16*3*√3):4=12√3 см²
Апофема МН, как гипотенуза равнобедренного прямоугольного треугольника МОН, равна ОН√2
ОН=АН:3=2 см
МН=2√2
Sбок= 3*МН*ВС:2=(3*2√2)*4√3):2
Sбок=12√6
S полн=S осн+Sбок=12√3 см²+12√6=12√3(1+√2)=≈50,178 см²
Вернемся к рисунку. 
Расстояние от вершины основания до противоположной боковой грани -перпендикуляр от вершины, проведенный к плоскости боковой грани.
Ясно, что расстояния от любой вершины осноания до противоположной ей грани равны. Найдем расстояние от вершины В до плоскости грани АМС.
ЕМ - высота треугольника АМС. 
Искомым расстоянием будет перпендикуляр ВК к проекции высоты ВЕ основания на плоскость АМС, т.е. к прямой ЕМ. 
Так как двугранный угол у основания равен 45º, то треугольник ЕКВ -  прямоугольный и равнобедренный.
Искомое расстояние
КВ=ВЕ*sin(45º )=6√2):2=3√2 см
Высота основания правильной треугольной пирамиды равна 6 см, а двугранный угол при стороне основания
4,7(94 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ