авсd - параллелограмм.
диагонали параллелограмма точкой пересечения делятся пополам.
пусть о - точка пересечения ас и вd.
тогда о - середина ас и середина вd.
найдем координаты середины диагонали ас:
х₀ = (3 + 1)/2 = 2;
у₀ = (- 4 + 2)/2 = - 1;
z₀ = (7 + (- 3))/2 = 2.
эти же координаты имеет середина диагонали вd.
найдем координаты d(х; у; z):
(- 5 + х)/2 = 2 (3 + у)/2 = - 1 (- 2 + z)/2 = 2
- 5 + х = 2 · 2 3 + у = - 1 · 2 - 2 + z = 2 · 2
- 5 + х = 4 3 + у = - 2 - 2 + z = 4
х = 4 + 5 у = - 2 - 3 z = 4 + 2
х = 9 у = - 5 z = 6
Объем призмы находят произведением площади её основания на высоту.
V=S•H
Высоту призмы найдем из треугольника ОСС1, где ∠ С1ОС=45º, а ∠С1СО=90º (т.к. призма прямая, все её ребра перпендикулярны основанию)⇒
∆ ОСС1 - равнобедренный и Н=СС1=ОС.
О- центр окружности, ОС=R, ⇒ высота СС1 призмы равна радиусу описанной вокруг основания окружности.
Формула:
R=abc:4S, где a,b и c - стороны треугольника АВС, S его площадь.
S ABC=CH•AH
СH=8 ( т.к. тр-к АВС - египетский. Можно и по т.Пифагора найти)
S ∆ ABC=8•6=48
R=10•10•12:4•48=6,25⇒
H=CC1=6,25
V=48•6,25=300 (ед. объема)
Х+Х+2+Х+Х+2=20
4х+4=20
4х=16
Х=4
Одна сторона равна 4 см, другая сторона равна 4+2=8см
ответ:4,8,4,8