Дана равнобедренная трапеция АВСД. АД - большее основание, ВС - меньшее основание. Из вершины В проведена высота ВК. Средняя линия трапеции ЕР. Высота ВК пересекает ЕР в точке О и делин на отрезки ЕО=2см и ОР=6см.
Проведем вторую высоту из вершины С. (высота СМ) СМ пересекает ЕР в точке Н.
Т.к. трапеция равнобедренная, то ОН=ВС, НР=ЕО=2см. ОН=6-2=4см. Следовательно основание ВС=4см.
Средняя линия трапеции равна полусумме оснований. Пусть АД=х, тогда ЕР=(4+х):2=8
4+х=20
х=12см
ответ: меньшее основание=4см, большее основание=12см.
На два оставшихся других приходится: 180-90=90 градусов
Примем малый угол за Х. Тогда имеем следующее уравнение:
х+4х=90
5х=90
х=18 (градусам)
1)18*4=72 градуса
ответ: малый угол - 18 градусов, больший - 72 градуса.