Если площадь полной поверхности шара 4*пи*квадрат его радиуса по условию равна 41, то можем найти радиус этого шара.
Этот радиус совпадает с радиусом основания цилиндра.
Два найденных радиуса, сложенные вместе - высота цилиндра.
Итак, мы знаем радиус основания цилиндра и его высоту.
Теперь не составит труда найти площадь его полной поверхности.
Для этого к площади боковой поверхности 2*пи*радиус основания*высота
нужно прибавить сумму площадей его оснований:
пи*квадрат радиуса основания.
Обратите внимание на ошибку в условии: площадь полной поверхности шара задана без величины пи. Исправьтесь,
Диагональ параллелограмма делит его на 2 равных треугольника. А вторая диагональ является медианой для этих треугольников, а т.к. медиана делит тр. на 2 равновеликих тр. ,то все 4 тр. равновелики, а значит (по определению) площади их равны.