Если два угла одного треугольника равны двум углам другого треугольника, то такие треугольники подобны, что следует из условия. Т.к. ∠А=∠А₁, ∠В=∠В₁, то треугольники АВС и А₁В₁С₁ подобны, а в подобных треугольниках сходственные стороны пропорциональны,
Значит, АВ=А₁В₁=ВС/В₁С₁⇒6/9=8/В₁С₁; В₁С₁=9*8/6=12/см/
6/9=АС/А₁С₁⇒АС=6*18/9=12/см/
Проверим пропорциональность сходственных сторон
АВ/А₁В₁=ВС/В₁С₁=АС/А₁С₁; 6/9=8/12=12/18.
Все отношения после сокращения дают 2/3, значит, найдены неизвестные стороны верно.
Сумма углов, прилежащих к боковой стороне, равна 180°
Меньший угол х, больший 3х, тогда х+2х=180
х=180/3
х=60
Меньший угол 60°, больший 2*60°=120°
Если опустить перпендикуляры из вершин тупых углов на большую сторону, то отрезки, отсекаемые ими равны половинам боковых сторон, т.к. прямоугольные треугольники, образованные высотами, боковыми сторонами и отрезками нижнего большего содержат угол в 30°, против которого лежат эти отрезки, т.е. 8/2=4/см/
а нижнее большее основание состоит из меньшего основания и двух отрезков по 4+4+4=12.
Периметр - сумма длин всех сторон, он равен
4+12+2*8=32/см/
средняя линия трапеции равна полусумме оснований. т.е. (12+4)/2=
8/см/
Эта окружность пересечет прямую ВС в двух точках (назовем их К и М).
Построим две окружности (на рисунке - синие) с центрами в точках К и М одинакового произвольного радиуса (большего половины отрезка КМ).
Через точки пересечения этих окружностей проведем прямую. Точку пересечения этой прямой с прямой ВС обозначим Н.
АН - искомая высота.
Красная прямая всегда пройдет через точку А, потому что точка А равноудалена от концов отрезка КМ и, значит, лежит на серединном перпендикуляре к этому отрезку. А красная прямая - это и есть серединный перпендикуляр к отрезку КМ.