Через точку о биссектрисы угла авс проведена прямая, параллельная прямой вс и перекающая луч ва в точке f. вычислите градусные меры углов треугольника вfо, если градусная мера, смежного с угом fов, равна 160
Если две стороны одного треугольника пропорциональны двум сторонам другого треугольника, а углы, заключенные между этими сторонами равны, то треугольники подобны.
Дано: ∠А = ∠А₁; АВ : А₁В₁ = АС : А₁С₁ . Доказать: ΔАВС подобен ΔА₁В₁С₁. Доказательство: Достроим на стороне АС треугольник АВ₂С, в котором углы, прилежащие к стороне АС, равны углам в треугольнике А₁В₁С₁ (как на рисунке) . Тогда ΔАВ₂С подобен ΔА₁В₁С₁ по двум углам. Запишем отношение сторон в этих треугольниках: АВ₂ : А₁В₁ = АС : А₁С₁. Сравним полученную пропорцию с данной в условии: АВ : А₁В₁ = АС : А₁С₁ Значит, АВ₂ = АВ. Но тогда ΔАВС = ΔАВ₂С по двум сторона и углу между ними (АС - общая, АВ₂ = АВ и ∠А = ∠А₁ = ∠1 по условию). Итак, ΔАВС = ΔАВ₂С, а ΔАВ₂С подобен ΔА₁В₁С₁, значит ΔАВС подобен ΔА₁В₁С₁. Доказано.
Дано: ABCD ромб ; BD =30 ; AC =40 ; AK ⊥ (ABCD) ; AK= 10 .
d( K , CD) = d( K , BC) - ?
Проведем из вершины A высоту ромба : AH ⊥ CD (AH = h) и соединим точка H с точкой K . KH -наклонная , AH ее проекция на плоскости ABCD. По теореме трех перпендикуляров CD ⊥ KH ,т.е. KH есть расстояние от точки K до стороны CD . Из ΔKAH : KH = √(KA² +AH²).
Сторона ромба равно a =√ ( (BD/2)² +(AC/2)² ) = (1/2)*√ ( BD² +AC)² = (1/2)*√ ( 30² +40)² =(1/2)*50=25. S(ABCD) =BD*AC/2 = 30*40/2 = 600. C другой стороны S(ABCD) =a*AH ⇒ 600 =25*AH ⇒AH =24. Окончательно : KH = √(KA² +AH²) = √(10²+24)² =√(100+576) =√676=26.
Угол FOК смежный с углом FOB = 160, угол FOB = 180-160=20 = углу ОВС как внутренние разносторонние, угол ОВС = углу ОВF - ВО биссектриса угла В = 20 град. Угол ВFО =
=180-20-20=140 [