Как ни удивительно, но в данном случае формула Герона для площади - это самый простой вычисления синуса большего угла. К сожалению, этот треугольник нельзя разрезать на Пифагоровы.
Первое, что надо понять - все размеры можно смело сократить на 5. В этом случае получается треугольник со сторонами 8, 15, 21, подобный исходному, то есть у него - такие же точно углы. Нужно найти угол противолежащий стороне 21(против большей стороны лежит больший угол). Обозначим его Ф.
Надем площадь.
Полупериметр (8 + 15+ 21)/2 = 22; 22 - 8 = 14; 22 - 15 = 7; 22 - 21 = 1;
S^2 = 22*14*7*1 = 11*14^2; S = 14*корень(11);
Поскольку S = 8*15*sin(Ф)/2, то sin(Ф) = (7/30)*корень(11);
С другой стороны, для cos(Ф) можно записать теорему косинусов
21^2 = 8^2 + 15^2 - 2*8*15*cos(Ф);
Откуда cos(Ф) = (21^2 - 8^2 - 15^2)/240 = 19/30;
Поскольку оба результата на первый взгляд получены разными можно проверить, что
(sin(Ф))^2 + (cos(Ф))^2 = 1; сделайте это сами :)
1. Угол между наклонной к плоскости и плоскостью - это угол между наклонной и ее проекцией на плоскость. Искомый угол - угол МАО. Высота правильного треугольника равна h=(√3/2)*a = (√3/2)*2√3=3. АО=(1/3)*h = 1 (свойство медианы). Tg(<MAO) = MO/AO = √3.
ответ: α = arctg√3 = 60°
2. Искомый угол - угол между наклонной и ее проекцией, то есть угол АВК. Sin(<ABK) = KA/KB = AC*tg60/5 = 5√3/11. <ABK = arcsin(0,787) ≈ 51,9°.
3. Опустим перпендикуляры SP и SH из точки S к сторонам АВ и АD соответственно. Прямоугольные треугольники APS и AHS равны по гипотенузе и острому углу. Значит АР=АН и АРОН - квадрат. тогда АО = АН*√2 (диагональ квадрата), АS = 2*АН (в треугольнике ASH катет АН лежит против угла 30°, а AS - гипотенуза). Косинус искомого угла (между наклонной AS и плоскостью АВСD, равного отношению проекции наклонной к наклонной) = АО/AS = АН√2/(2*АН) = √2/2.
ответ: искомый угол равен 45°.
Пусть угол ВОК=85 градусов
тогда угол АОС=угол ВОК=85 градусов (как вертикальный - вертикальные углы равны)
угол АОВ=угол СОК=180 -85=95 градусов (как смежный - сумма смежных углов равна 180 градусов)
ответ: 85 градусов, 95 градусов, 95 градусов