Объяснение:
У ромба 2 пары равных внутренних углов, сумма которых равна 360°.
Пусть тупой угол равен 2х, тогда острый будет х. Получаем: 2*2х+2х=360
6х=360
х=60.
Значит острый угол ромба равен 60°, а тупой 120°.
Площадь ромба равна половине произведения его диагоналей.
Найдем диагонали.
Известно, что диагонали ромба делят внутренние углы пополами и пересекаются под прямым углом. Исходя из этого, приняв, что диагонали ромба пересекаются в точке О и ∠АВС - тупой, рассмотрим ΔВСО.
Он прямоугольный с ∠ОСВ= 30° и ∠ОВС=60° при гипотенузе ВС. Значит его катет ВО = ВС·sin30° = 3√3,
катет СО=ВС·sin60° = 6√3 · √3 ÷2 = 9
Мы определили длины половин диагоналей ромба.
Тогда площадь ромба АВСD равна
3√3 × 9 × 2 = 54√3 =
Объяснение:
1
6х-12=4х-8
6х-4х= - 8+12
2х=4
Х=2
2/3×х=18
Х=18:2/3
Х=18×3/2
Х=27
(2х-5)-(3х-7)=4
2х-5-3х+7=4
-х+2=4
-х=4-2
-х=2
Х= - 2
5(х-1,2)-3х=2
5х-6-3х=2
2х=2+6
2х=8
Х=4
2
Пусть х см ширина
Х+4 см длина
Р=28 см
2(Х+х+4) =28
2×2х+8=28
4х=28-8
4Х=20
Х=5 см ширина
5+4=9 см длина
1)
<1+<2+<3=220
<4=360-220=140 градусов
2)
<ac=<4bc
<ac+<bc=180
4bc+bc=180
5bc=180
bc=36 градусов
<ас=4×36=144 градуса
3)
<АОС=<ВОD+30
<COD=<BOD
<AOC+<COD+<BOD=180
<BOD+30+<BOD+<BOD=180
3<BOD=180-30
3<BOD=150
<BOD=50 градусов