Соединив центры K и М окружностей
между собой и каждый из них с точкой
касания, получим два треугольника с
общей вершиной в точке А на отрезке между
точками касания окружностей с прямой.
Радиус, проведенный к касательной
в точку касания, перпендикулярен ей
( свойство),
Получившиеся прямоугольные треугольники
подобны по равным вертикальным углам и
накрестлежащим у их центров.
Пусть радиус меньшей окружности будет r,
а большей - R, и пусть часть отрезка между
их точками касания у меньшей окружности
будет х.
Тогда отрезок у большей окружности 5-х
( см. рисунок)
Тогда из подобия треугольников следует
отношение:
r:R=x:(5-x)
4:8=x:(5-x)
8х=20-4x
12x=20
х=5/3- длина отрезка у меньшей окружности
5-5/3=10/3 длина отрезка у большей
окружности
По т.Пифагора
KA2=42+(5/13)2
KA2=16+25/9=169/9
KA=13/3
Из треугольника в большей окружности
MA2=82+(10/3)2=676/9
MA=26/3
KA+MA=13/3+26/3=39/3=13
KM=13 см
наверное так
61 градус
Объяснение:
Для решения рассмотрим рисунок (https://bit.ly/2Rmvpw4).
Отношение длин отрезков ОС / ОД и ОА / ОВ одинаково.
ОС / ОД = 30 / 10 = 3.
ОА / ОВ = 12 / 4 = 3.
Угол ВОД = АОС как вертикальные углы.
Тогда треугольник ВОД и АОД подобны по двум пропорциональным сторонам и углу между ними с коэффициентом подобия 3.
В треугольника ОВД определим величину угла ОДВ. ОДВ = 180 – ДВО – ДОВ = 180 – 61 – 52 = 670.
Отрезки ВД и АС, ОД и ОС есть сходственные стороны, тогда угол АСО = ВДО = 610.
ответ: Угол АСО равен 610.
Значит высота пирамиды равна SQ=10:(2/3) = 15 см.
Ребро пирамиды найдем по Пифагору из прямоугольных треугольников AOQ и ASQ.
OQ=(1/3)*SQ = 5cм. AQ=√(AO²-OQ²) = √(100-25) = √75 = 5√3см.
AS=√(AQ²+SQ²) = √(75+225) = 10√3 см.
ответ: высота пирамиды равна 15см, а ребро равно 10√3см.