Прямые а и б параллельны. через каждую из них проведено по плоскости, которые пересекаются по прямой с. как расположена прямая с по отношению к прямым а и б? сделайте рисунок
Если две стороны одного треугольника пропорциональны двум сторонам другого треугольника, а углы, заключенные между этими сторонами равны, то треугольники подобны.
Дано: ∠А = ∠А₁; АВ : А₁В₁ = АС : А₁С₁ . Доказать: ΔАВС подобен ΔА₁В₁С₁. Доказательство: Достроим на стороне АС треугольник АВ₂С, в котором углы, прилежащие к стороне АС, равны углам в треугольнике А₁В₁С₁ (как на рисунке) . Тогда ΔАВ₂С подобен ΔА₁В₁С₁ по двум углам. Запишем отношение сторон в этих треугольниках: АВ₂ : А₁В₁ = АС : А₁С₁. Сравним полученную пропорцию с данной в условии: АВ : А₁В₁ = АС : А₁С₁ Значит, АВ₂ = АВ. Но тогда ΔАВС = ΔАВ₂С по двум сторона и углу между ними (АС - общая, АВ₂ = АВ и ∠А = ∠А₁ = ∠1 по условию). Итак, ΔАВС = ΔАВ₂С, а ΔАВ₂С подобен ΔА₁В₁С₁, значит ΔАВС подобен ΔА₁В₁С₁. Доказано.
ВН=h -высота параллелограмма, ВD - другая диагональ параллелограмма. Пусть одна часть равна х, тогда по условию АМ=3х, МD=2х. Диагональ ВD делит его на два равных треугольника, площади которых также равны, S(АВD)=S(ВСD)= 30 см². Высота ВН разделила ΔАВD на два треугольника с одной высотой h. Определим площадь каждого из этих треугольников. S(АВН)=0,5·АМ·ВМ=0,5·3х·h=1,5хh. S(ВМН)=0,5·МD·ВН=0,5·2х·h=хh Сумма площадей этих треугольников равна площади ΔАВD=30 см². 1,5хh+хh=30, 2,5хh=30, h=30/2,5х=12/х. Вычислим площадь ΔАВМ. S(АВМ)=0,5·АМ·h=0,5·3х·12/х=0,5·3·12=18 см². ответ: 18 см².