Обозначим пирамиду МАВС.
Боковые ребра пирамиды наклонены под одинаковым (45°) углом к плоскости основания.
Значит, их проекции равны радиусу описанной окружности правильного треугольника, а вершина пирамиды проецируется в центр О ее основания.
Боковые ребра с высотой пирамиды образуют равнобедренный прямоугольный треугольник .
В ∆ МАО угол МАО= 45° (по условию). Поэтому высота МО пирамиды равна радиусу АО описанной окружности.
Радиус описанной окружности находят по формуле R=а/√3
R=АО=12:√3=12√3:3=4√3
МО=АО=4√3
1. <КМР=<ТМР=90°(по условию РМ-высота)
2. <КРМ=<ТРМ (по условию РМ-биссектриса)
3. РМ общая сторона(катет
вывод: ΔКРМ=ΔТРМ (прямоугольные треугольники равны по катету и прилежащему углу)