прямая CF, параллельна прямой BE, лежащей в плоскости CBE и проходит через точку С этой плоскости. Значит точки B, C, E и F лежат в одной плоскости.
медианы AA1, BB1 параллельны плоскости a. При этом не совпадают и лежат в плоскости треугольника ABC. Значит плоскость треугольника ABC || a.
прямые BС и EF не пересекаются, т.к лежат в параллельных плоскостях ABC и a. При этом они принадлежат одной плоскости BCEF. Значит они параллельны.
итого, B, C, E, F лежат в одной плоскости BC || EF, BE || CF. Значит BCEF - параллелограм
S(ABCD)=112 , BH-высота, AH:HD=3:4 , пусть k-коэффициент пропорциональности, тогда AH=3k ,HD=4k, AD=7k S=AD*BH 112=7k*8⇒112=56k, k=2 , AD=7*2=14 треугольник АВН,АН=2*3=6, ВН=8, находим АВ²=8²+6²=64+36=100⇒АВ=√100=10
Р=(АВ+АД)*2(10+14)*2=48