Пусть а=8 - ширина прямоугольника, тогда длину найдем через прямоугольный треугольник с катетом 8 и гипотенузой 10. 8²+ b²=10² b²=(10-8)(10+8) b²=36 b=6 - длина S=ab=6*8=48
Длина отрезка АВ = √(2-(-2))²+(-3-3)²) = √(16+36) = √52 = 2√13. Середина его - начало координат (полусумма координат по х и по у равна 0). Угловой коэффициент а прямой АВ = Δу/Δх = -6/4 = -3/2. Точка С лежит на перпендикуляре к середине отрезка АВ. Коэффициент а₁ в уравнении этой прямой равен -1/а = -1/(-3/2) = 2/3. Уравнение этой прямой у = (2/3)х. Для определения координат точки С надо решить систему уравнений - окружности с радиусом R = √52 с центром в одной из точек А или В и прямой у = (2/3)х. Примем за центр точку В. Решаем систему подстановки значение у из второго уравнения в первое. Получаем, раскрыв скобки и приведя подобные, х² = 351/13 = 27. Отсюда х = +-√27 = +-3√3. у = +-2√3. То есть имеем 2 точки, симметричные АВ, в которых может находиться вершина С(3√3; 2√3) и С(-3√3; -2√3).
Длина медианы определяется по формуле: . Подставив значения сторон, получаем длины медиан: a b c 5 6 8 ма мв мс 6.61438 5.95819 3.80789. Медианы треугольника пересекаются в одной точке и делятся точкой пересечения в отношении 2:1, считая от вершины. Деление медиан точкой пересечения: ма мв мс АО ОД ВО ОЕ СО ОК 4.40959 2.20479 3.972125 1.98606 2.5386 1.2693.
S=6·8=48
ответ: 48