ΔОСВ равносторонний. В нем углы при вершинах С и В равны.т.к. ОС=ОВ= радиусы одной окружности. Т.е. равнобедренный получается. но поскольку углы С и В еще и по 60°в, то и угол О в этом треугольнике 60 °. Тогда внешний угол АОВ равен сумме двух внутренних ∠ В и ∠С, с ним не смежными, т.е. он равен 60°+60°=120°, а тогда в равнобедренном треуг. АОВ ∠ А =∠ В= 30 °,
(180°-120°)/2=30°, как углы при основании равнобедренного ΔАОВ, т.к. АО и ВО радиусы одной окружности и ∠DАС = 90°, т.к. радиус, проведенный в точку касания перпендикулярен касательной АD, значит, искомый ∠ DАВ =90°-30°=60°
ответ 60 °
Объяснение:
М=1/2*√2a²+2b²-c²
Подставим все медианы и обозначим стороны за x (медиана, опущенная на нее - 13) y(М=√601) z(М=2√61) Получим систему из трех уравнений
13=1/2√2y²+2z²-x²
√601=1/2*√2z²+2x²-y²
2√61=1/2√2z²+2x²-z²
Возведем в квадрат обе части каждого уравнеия, т.е. избавимся от корней
169=1/4(2y²+2z²-x²)
601=1/4(2z²+2x²-y²)
244=1/4*(2y²+2x²-z²)
Приведем дроби к общему знаменателю - 4 и запишем все уравнения уже без знаменателей
2y²+2z²-x²²=676
2z²+2x²-y²=2404
2y²+2x²-z²=976
Выразим из первого x² x²=2y²+2z²-676 (1) и подставим во второе и третье уравнение
2z²+2(2y²+2z²-676)-y²=2404
2y²+2(2y²+2z²-676)-z²=976
После преобразования подобных слагаемых получим
2z²+y²=1252
2y²+z²=776
Домножим первое уравнение на (-2) и сложим оба уравнения
-4z²-2y²=-2504
z²+2y²=776 (2)
-3z²=-1728
z²=576
z=24
Подставим z² в (2)
275+2y²=776
2y²=200
y²=100
y=10
Подставим y² и z² в (1)
x²=2*100+2*576-676
x²=676
x=26
Т.е стороны треугольника 24, 10, 26
самое простое проверить теорему Пифагора
10²+24²=36²
100+576=676
Все ОК, т.е треугольник прямоугольный