Прямая призма. Sбок пов.=Росн*Н Pосн=4*с, с - сторона ромба диагонали ромба перпендикулярны и точкой пересечения делятся пополам. прямоугольный треугольник: катет а= 8 см(16:2) - (1/2) диагонали ромба -основания призмы катет b =15 см (30:2) - (1/2) диагонали ромба гипотенуза с - сторона ромба по теореме Пифагора: c²=8²+15², c=17 см бОльшая диагональ призмы =50 см -наклонная. Большая наклонная имеет бОльшую проекцию, => рассмотрим прямоугольный треугольник: гипотенуза с=50 см - бОльшая диагональ призмы катет а= 30 см - бОльшая диагональ основания призмы катет H - высота призмы, найти. по теореме Пифагора: 50²=30²+H². H²=1600. H=40 см
Биссектриса треугольника делит противолежащую сторону на отрезки, пропорциональные прилежащим сторонам. 1. Пусть АМ = х, тогда СМ = 3 - х. (3 - x) : x = 3 : 2 6 - 2x = 3x 5x = 6 x = 1,2 AM = 1,2 см, СМ = 1,8 см
2. Так как MN < NK, то MP < PK. Пусть МР = х, тогда РК = х + 0,5 4 : x = 5 : (x + 0,5) 5x = 4x + 2 x = 2 МР =2 см, РК = 2,5 см
3. DE + EP = Pdep - DP = 21 - 7 = 14 см Пусть DE = x, тогда ЕР = 14 - х x : 3 = (14 - x) : 4 4x = 42 - 3x 7x = 42 x = 6 DE = 6 см, ЕР = 8 см
4. Пусть АВ = х, тогда ВС = х + 3. x : 2 = (x + 3) : 3 3x = 2x + 6 x = 6 АВ = 6 см, ВС = 9 см
6. В условии опечатка: надо найти длины сторон CD и DE. DF - диагональ ромба, а диагонали ромба лежат на биссектрисах его углов, значит DF - биссектриса треугольника. CD + DE = Pcde - CE = 55 - 20 = 35 см Пусть CD = х, тогда DE = 35 - х x : 8 = (35 - x) : 12 12x = 280 - 8x 20x = 280 x = 14 CD = 14 см, DE = 21 см
7. ΔАВС, ∠С = 90°, АМ - биссектриса. Пусть АС = х, тогда по теореме Пифагора АВ = √(х² + 81). x : 4 = √(х² + 81) : 5 5x = 4√(х² + 81) 25x² = 16x² + 81 · 16 9x² = 81 · 16 x² = 9 · 16 x = 3 · 4 = 12 АС = 12 см Sabc = AC · CB / 2 = 12 · 9 = 54 см²
8. Так как точка О равноудалена от катетов, СО - диагональ квадрата, а диагонали квадрата лежат на биссектрисах его углов. Значит СО - биссектриса треугольника. а : 40 = b : 30 b = 30a / 40 = 3a/4 По теореме Пифагора: 70² = a² + 9a²/16 25a²/16 = 4900 a² = 4900 · 16 / 25 = 196 · 16 a = 14 · 4 = 56 CB = 56 см АС = 3 · 56 / 4 = 3 · 14 = 42 см Sabc = CB · AC / 2 = 56 · 42 / 2 = 1176 см²
5х=30
х=6
АС=6