Основание призмы ромб АВСД. верхнее основание А₁В₁С₁Д₁ АА₁=2 см, АС₁=А₁С=8 см, В₁Д=ВД₁=5см
ΔАА₁С: АА₁=2см, АС₁=8см, <А₁АС=90° по т. Пифагора: АС²=(А₁С)²-(АА₁)², АС=√60
ΔВВ₁Д: ВВ₁=2 см, В₁Д=5 см,<В₁ВД=90° по т. Пифагора: ВД²=(В₁Д)²-(ВВ₁)², ВД=√21 АО=ОС=√60/2, ВО=ОД=√21/2 ΔАОД: АО=√60/2, <АОД=90°, ОД=√21/2 по т. Пифагора: АД²=АО²+ОД² АД²=(√60/2)²+(√21/2)², АД²=81/4, АД=9/2, АД=4,5 ответ: сторона основания 4,5 см
Диагональ призмы, равная 8, образует прямоугольный треугольник с ребром призмы и одной из диагоналей основания: где гипотенуза 8 (диагональ призмы), один из катетов 2 (высота призмы), а второй катет (диагональ основания) находится по теореме Пифагора d1=√ 64-4=√6о Аналогично вторая диагональ призмы, равная 5, образует прямоугольный треугольник с высотой призмы и второй диагональю основания. Гипотенуза 5, один катет 2, второй катет (вторую диагональ основания) находим так же по Теореме Пифагора d2=√25-4=√21 Диагонали ромба точкой пересечения делятся пополам и пересекаются под прямым углом. Следовательно ромб делится на 4 одинаковых прямоугольных треугольника. Рассмотрим один из них: гипотенуза - сторона ромба, катеты - половинки диагоналей ромба. Находим гипотенузу по теореме Пифагора а=√(60+21)/4=√81/4=9/2=4,5
В прямоугольной трапеции ABCD заданы основания AD = 8 и BC = 2 .Биссектриса прямого угла трапеции пересекает сторону CD в точке K, при этом CK : KD =1: 2 . Найдите площадь трапеции.Биссектриса ВН угла при вершине равнобедренного тр-ка является его высотой и медианой. Прямоугольный тр-к АВН равнобедренный, так как ВН=АН. АВ=3, тогда по Пифагору 2*ВН² =АВ² = 9 и ВН = 3√2/2. Тогда площадь тр-ка АВС Sabc = 0,5*АС*ВН=АН*ВН=ВН² = 18/4 = 9/2.Но эта же площадь равна 0,5*ВС*АК=9/2. Тогда АК = 9/3 =3. Второй вариант решения: Если треугольник АВН - равнобедренный (АН=ВН), то <A=45°. Тогда и <С=45° (так как тр-к АВС - равнобедренный - дано), а <В=90°. Следовательно, высота АК, опущенная на боковую сторону ВС, совпадает со стороной АВ (АВ - катет треугольника АВС) и равна этой стороне, то есть АК = 3. ответ в приложенном рисунке
Биссектриса угла при вершине равнобедренного треугольника будет и медианой и высотой... обозначим ее длину (а) получившийся при этом прямоугольный треугольник получится равнобедренным... катеты у него равны: биссектриса = (а) и половина основания тоже (а) в этом прямоугольном равнобедренном треугольнике гипотенуза = 3 найдем катеты... 2a^2 = 9 ---> a^2 = 4.5 высота, опущенная на боковую сторону, будет в свою очередь и медианой... и опять из нового прямоугольного треугольника по т.Пифагора: x^2 + (1.5)^2 = 4.5 x^2 = 4.5 - 1.5*1.5 = 1.5*(3 - 1.5) = 1.5*1.5 x = 1.5
АА₁=2 см, АС₁=А₁С=8 см, В₁Д=ВД₁=5см
ΔАА₁С: АА₁=2см, АС₁=8см, <А₁АС=90°
по т. Пифагора: АС²=(А₁С)²-(АА₁)², АС=√60
ΔВВ₁Д: ВВ₁=2 см, В₁Д=5 см,<В₁ВД=90°
по т. Пифагора: ВД²=(В₁Д)²-(ВВ₁)², ВД=√21
АО=ОС=√60/2, ВО=ОД=√21/2
ΔАОД: АО=√60/2, <АОД=90°, ОД=√21/2
по т. Пифагора: АД²=АО²+ОД²
АД²=(√60/2)²+(√21/2)², АД²=81/4, АД=9/2, АД=4,5
ответ: сторона основания 4,5 см