Проведем окружность с центром в точке В произвольного радиуса. Точки пересечения этой окружности со сторонами угла АВС обозначим E и F.
Проведем окружность с тем же радиусом с центром в точке D. L - точка пересечения окружности с лучом DK.
Проведем окружность с центром в точке Е и радиусом EF, и такую же окружность с центром в точке L. Р - одна из точек пересечения этой окружности с первой.
Затем построим такую же окружность с центром в точке Р. Обозначим точку ее пересечения с первой окружностью N.
Через точку N проведем луч DM.
Угол MDK - искомый.
Проведем окружность с центром в точке В произвольного радиуса. Точки пересечения этой окружности со сторонами угла АВС обозначим E и F.
Проведем окружность с тем же радиусом с центром в точке D. L - точка пересечения окружности с лучом DK.
Проведем окружность с центром в точке Е и радиусом EF, и такую же окружность с центром в точке L. Р - одна из точек пересечения этой окружности с первой.
Затем построим такую же окружность с центром в точке Р. Обозначим точку ее пересечения с первой окружностью N.
Через точку N проведем луч DM.
Угол MDK - искомый.
Дан четырехугольник ABCD
AB=CD
BC=AD
угол A = 30⁰
E ∋ BC
угол CDE = 60⁰
Доказать. ABED - прямоугольная трапеция.
Доказательство.
Рассм. ABCD. угол A = 30⁰ ⇒ угол С = 30⁰
угол В = углу D = (360⁰ - 30⁰ - 30⁰)/2 = 300⁰/2 = 150⁰
угол ADE = угол ADC - угол CDE
т.к. угол ADC 150⁰, a по условию угол CDE = 60⁰, то угол AED = 150⁰ - 60⁰ = 90⁰
Опеределения:
- трапецией называется четырехугольник, у которого две противолежащие стороны параллельны, а две другие не параллельны.
- трапеция, один из углов которой прямой, называется прямоугольной
Рассмотрим ABED - четырехугольник.
BE||AD,
AB не параллельно ED (т.к. ED перпендикуляр к AD)
угол EDA - 90⁰
След-но ABED - прямоугольная трапеция.