М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
kudesnik72rusoz03b4
kudesnik72rusoz03b4
03.07.2021 04:06 •  Геометрия

Втреугольнике abc биссектриса bk является его высотой. найдите периметр треугольника abc, если периметр треугольника abk равен 16 см и bk=5 см

👇
Ответ:
andreisolo18
andreisolo18
03.07.2021
Т.к. биссектриса является высотой, треугольник ABC - равнобедренный, с основанием AC. Значит, AB=BC, а BK также является медианой, т.е. AK=CK.
Периметр ABK P=AB+BK+AK;
Периметр ABC=AB+AC+BC=AB+AK+KB+BC=2AB+2AK=2(AB+AK)=2(Pabk-BK)=2(16-5)=2*11=22 см

Задача 2
Т.к. AB=BC, AF=EC=AB/2=BC/2;
Рассмотрим треугольники AFC и CEA
Они равны по двум сторонам (AF=EC и AC - общая) и углу между ними (EAC=FCA)
Тогда углы EAC=FCA.
Значит, угол BAE=BAC-EAC=BCF
Углы FMA=EMC, как вертикальые
Тогда углы AFM=180-FMA-FAM=MEC
Значит, треугольники AFM=EMC по стороне (EC=AF) и двум прилежащим к ней углам (AFM=MEC и FAM=ECM)
Тогда AM=MC => треугольник AMC - равнобедренный
4,5(89 оценок)
Открыть все ответы
Ответ:

Вариант 1

№1.  Проведем AD — перпендикуляр к плоскости α. АВ и АС — проекции наклонных DB и DC на плоскость α. Треугольники DAB и DAC — прямоугольные. Так что DC = а : sin45° = a√2 ; DB = а : sin30° = 2a.

Далее, ΔBDC — прямоугольный (по условию). Тогда по теореме Пифагора:  BC = \sqrt{DB^{2}+DC^{2} = \sqrt{2a^{2}+4a^{2} = \sqrt{6a^{2} } = a\sqrt{6}

№2. Пусть D - данная точка. DB и DC - наклонные. Проведем AD — перпендикуляр к плоскости α. Тогда АВ и АС — проекции наклонных на плоскость α. Тогда ΔABD и ΔACD — прямоугольные, равнобедренные. Так что АВ = АC = AD = а.

DC = DB = a : sin45 = a\sqrt{2}

Так что ΔBDC — равнобедренный, а поскольку ∠BDC = 60°, то значит треугольник BDC — равносторонний, т.е.

DB = DC = BC = a\sqrt{2}

(Дальше долко)

4,4(94 оценок)
Ответ:
Dasiol
Dasiol
03.07.2021
Центр описанной окружности располагается на пересечении серединных перпендикуляров треугольника. Так как треугольник равнобедренный, то биссектрисаи серединный перпендикуляр, проведенные к основанию, совпадают.
Следовательно, BO - биссектриса угла ABC.
Тогда: ∠CBO=∠ABC/2=170°/2=85°
Треугольник OBC - равнобедренный, так как OB и OC - радиусы окружности и следовательно равны.
По свойству равнобедренного треугольника:
∠CBO=∠BCO=85°
По теореме о сумме углов треугольника:
180°=∠CBO+∠BCO+∠BOC
180°=85°+85°+∠BOC
180°-85°-85°=10°
∠BOC=10°
4,7(7 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ