У этой задачки есть очень наглядное решение.
Можно взять три взаимно перпендикулярные координатные оси и разместить четыре вершины прирамиды в точках (0,0,0) (1,0,0) (0,1,0) (0,0,1). Легко убедиться, что любая из вершин, кроме (0,0,0), является вершиной трехгранного угла, заданного в задаче.
Сама пирамида при этом представляет собой правильную треугольную пирамиду, "боковые" грани которой - равнобедренные прямоугольние треугольники, а "основание" - правильный треугольник с вершинами в точках (1,0,0) (0,1,0) (0,0,1).
Поэтому искомый угол равен 60 градусам.
Эту же мысль (трудно назвать это решением - уж больно просто:)) можно выразить без упоминания координатных осей. Дело в том, что упомянутая пирамида - это часть обыкновенного куба, отсекаемая плоскостью, проходящей через концы трех ребер, имеющих общую вершину.
Берется какая -то вершина куба АBCDA1B1C1D1, например, А, и проводится сечение через точки В, D и А1, у пирамиды А1BDA все трехгранные углы при вершинах "основания" A1BD соответствуют условию задачи. В самом деле, рассмотрим, например, вершину D. Треугольники ADB и ADA1 - равноберенные прямоугольние, поэтому углы АDB и ADA1 равны 45 градусов. Что же касается двугранного угла между плоскостями АDB и ADA1, то это - двугранный угол между гранями куба :), то есть он равен 90 градусам.
Поэтому трехгранный угол при вершине D пирамиды А1BDA удовлетворяет условию задачи. По условию задачи, нужно найти угол A1DB, но он очевидно равен 60 градусам, поскольку треугольник A1DB равносторонний.
а)Даны стороны треугольника АВ и АС и угол между ними.
На произвольной прямой отложим отрезок, равный длине стороны АС, отметим на нём точки А и С.
Из вершины А заданного угла проведем полуокружность произвольного радиуса и сделаем насечки М и К на его сторонах. АМ=АК= радиусу проведенной окружности.
Из т.А на отложенном отрезке тем же раствором циркуля проведем полуокружность. Точку пересечения с АС обозначим К1.
От К1 циркулем проведем полуокружность радиусом, равным длине отрезка КМ, соединяющим стороны заданного угла.
Эта полуокружность пересечется с первой. Через точку пересечения проведем от т. А луч и отложим на нем отрезок, равный данной стороне АВ, отметим точку В. . Соединим В и С.
Искомый треугольник построен.
б) Биссектриса проводится так же, как проводится срединный перпендикуляр к отрезку.
Из точек, взятых на сторонах угла на равном расстоянии от его вершины А ( отмеряем циркулем) проводим полуокружности равного радиуса так, чтобы они пересеклись. Через точки их пересечения и А проводим луч. Треугольник АМ1К! - равнобедренный по построению, АЕ - перпендикулярен М1К1 и делит его пополам.
Треугольники АЕМ1 и АЕК1 равны по гипотенузе и общему катету. Поэтому их углы при А равны. АЕ - биссектриса.https://ru-static.z-dn.net/files/d75/da87bd0566b405886163e8b871868042.png
Объяснение: