Обозначим хорды АС и АК. Они - касательные, проведенные к меньшей окружности.
Отрезки касательных к окружности, проведённых из одной точки, не лежащей на окружности, равны и составляют равные углы с прямой, проходящей через эту точку и центр окружности.
⇒. ∠САВ=∠КАВ=60°:2=30°
Проведем СВ и КВ.
∠АСВ=∠АКВ=90° - опираются на диаметр АВ.
∆ АСВ=∆ АКВ - по гипотенузе и острому углу
⇒ АС=АК,
Проведем радиус ОМ в точку касания окружности с АС. Радиус, проведенный в точку касания, перпендикулярен касательной. ⇒
∠АМО=90°
ОМ=r и противолежит углу 30°. ⇒ гипотенуза ОА=2r.
Тогда АВ=3r ⇒
Обозначим хорды АС и АК. Они - касательные, проведенные к меньшей окружности.
Отрезки касательных к окружности, проведённых из одной точки, не лежащей на окружности, равны и составляют равные углы с прямой, проходящей через эту точку и центр окружности.
⇒. ∠САВ=∠КАВ=60°:2=30°
Проведем СВ и КВ.
∠АСВ=∠АКВ=90° - опираются на диаметр АВ.
∆ АСВ=∆ АКВ - по гипотенузе и острому углу
⇒ АС=АК,
Проведем радиус ОМ в точку касания окружности с АС. Радиус, проведенный в точку касания, перпендикулярен касательной. ⇒
∠АМО=90°
ОМ=r и противолежит углу 30°. ⇒ гипотенуза ОА=2r.
Тогда АВ=3r ⇒
ВС:В1С1=АС:(108-В1С1). Решаем АС*В1С1=ВС*(108-В1С1). Для удобства записи пусть В1С1=Х, тогла 40Х=42(108-Х). Получаем Х=27=В1С1.
Коэффициент подобия этих треугольников=ВС:В1С1=42:27=14:9. т.к. треугольники подобны, то АС:А1С1=14:9. Отсюда А1С1=9*АС/14=9 см.
АВ:А1В1=14:9. Отсюда А1В1=9АВ/14= целое не выходит. Периметр это сумма длин всех сторон треугольника.