Грань АА1С1С - квадрат.
АС по т.Пифагора равна 20. В призме все боковые ребра равны. ⇒ ВВ1=СС1=АА1=АС=20.
По условию боковые ребра пирамиды АВ1СВ равны, значит, их проекции равны между собой и равны радиусу окружности, описанной около основания АВС. ⇒
Вершина пирамиды В1 проецируется в центр Н описанной около прямоугольного треугольника окружности, т.е. лежит в середине гипотенузы.
∆ АВС прямоугольный, R=АС/2=10.
АН=СН=ВН=10.
Высота призмы совпадает с высотой В1Н пирамиды.
По т.Пифагора
В1Н=√(BB1²-BH²)=√(20²-10²)=√300=10√3
Формула объёма призмы
V=S•h где S - площадь основания, h - высота призмы.
S-12•16:2=96 (ед. площади)
V=96•10√3=960√3 ед. объёма.
(Рисунок 2) Задача: Две параллельные прямые пересечены третьей. Известно, что разность двух внутренних односторонних углов равна 30°. Найти эти углы.
Решение:Углы 1 и 2 внутренние односторонние, их сумма равна 180градусов, т. е.
1∠ + ∠ 2 = 180градусов. (1)
Обозначим градусную меру угла 1 через х. По условию ∠ 2 - х = 30градусов, или ∠ 2 = 30градусов + x.
Подставим в равенство (1) значения углов 1 и 2, получим
х + 30градусов + х = 180градусов.
Решая это уравнение, получим х = 75градусов, т. е.
∠ 1 = 75градусов, a ∠ 2 = 180градусов - 75градусов = 105градусов.
Рисунок 1. Я просто нарисовала и нужно доказать параллельность KC и MQ.