1. х-одна сторона, тогда 3х - вторая сторона
75=3х*х
75=3*х^2
х^2=25
x=5
ответ : 5 см, 15 см
2. треугольник равнобедренный. значит можно этот треугольник рассмотреть как 2 прямоугольных. треугольник равнобедренный( гипотенуза 5, один из катетов равен 3) тогда по т. Пифагора высота равна 4.
остальные высоты можно найти через площадь. площадь равна 1/2*4*6=12
1/2*h1*5=12, h1 = 4,8. вторая высота такая же т.к. сторона, к которой проведена высота, такая же.
ответ : 4 см, 4,8см, 4,8 см
3. 8/а=5/в=7/с=1/4
8\а=1/4
а=32
5/в=1/4
в=20
7/с=1/4
с=28
Р=32+20+28=80
площадь находим через формулу Герона
S= sqrt {40*8*20*12}=sqrt{76800}=10*2*2*2*2sqrt{3}=160sqrt{3}
ответ : 80 см, 160sqrt{3} см
4.площадь прямоугольного треугольника вычисляется по формуле S = (a*b)/2.
a, b - соответственно катеты.
a/b=7/12 по условию задачи.
выражаем b через a: b=(a*12)/7.
Подставляем в формулу для площади:
S=(a*a*12)/7
168=(a*a*12)/7
a*a=168*7/6=196
a=14.
b=14*12/7=24.
ответ: 14 и 24
5. Пусть
a-верхнее основание
b-нижнее
h-высота
135-90= 45 градусов
треуг CDH -равнобедренный тк угол CHD-прямой
то BC=HD=6
то AD=AH+HD=6+6=12
S=(a+b)/2*h
S=(6+12)/2*6=54
ответ : 54
7.
сумма противоположных сторон описанного четырехугольника равны
АВСД -четырехугольник
АВ+СД=ВС+АД=12
r -радиус вписанной окр. с центром т.О
Sаод=0,5*r*АД
Sаов=0,5*r*АВ
Sвос=0,5*r*ВС
Sсод=0,5*r*СД
Sавсд=Sаод+Sаов+Sвос+Sсод=0,5*r(АД+АВ+ВС+СД)=0,5*5(12+12)=60
ответ : 60
8.
Сначала нужно доказать что треугольники подобны..
Угол C общ
угол B = углу A1B1C ( по фалесу) ,
значит треугольники подобны по двум углам.
21,5/9*7150,5/9=16 целых 6,5/9 см -A1C
18/9*7=14 см - В1С
10/9*7=70/9=7 целых 7/9 см А1В1
P= 16 целых 6,5/9 +14+ 7 целых 7/9=37 целых 13,5/9=38 целых 4,5/9=38,5
ответ: 38,5 см
Пусть данный ΔАВС, ∟A = 60 °, ∟B = 70 °, АВ = 2 см, AD = 1 см.
Найдем углы ΔBDC.
В ΔABD проведем медиану DK.
АК = КВ = 1 / 2АВ = 2: 2 = 1 см.
Рассмотрим ΔAKD - piвнобедрений (AD = АК = 1 см),
Если ∟A = 60 °, то ΔAKD - piвносторонний.
Итак, AD = АК = KD, ∟А = ∟AКD = ∟KDA = 60 °.
∟ВКD i ∟AKD - смежные, тогда ∟BKD + ∟AKD = 180 °.
∟BKD = 180 ° - 60 ° = 120 °.
ΔBKD - равнобедренный (KB = KD = 1 см), тогда
∟KBD = ∟KDB = (180 ° - 120 °): 2 = 30 °.
Рассмотрим ΔАВС:
∟A + ∟B + ∟C = 180 °. ∟C = 180 ° - (60 ° + 70 °); ∟C = 50 °.
∟B = ∟KBD + ∟DBC; ∟DBC = 70 ° - 30 ° = 40 °.
Рассмотрим ΔBDC:
∟DBC + ∟C + ∟BDC = 180 °.
40 ° + 50 ° + ∟BDC = 180 °. ∟BDC = 180 ° - 90 ° = 90 °.
Biдповидь: ∟BDC = 90 °; ∟DBC = 40 °; ∟C = 50 °
Объяснение:
ТМ // ВС . При секущей МР углы МРС и ТМР равны, как внутр-ние накрест лежащие, значит угол ТМР=51град.
2) угол MPC=51 градус, угол ABC=52 градуса, значит МР и ВТ не парал-ны, след-но пересекутся.