Объем конуса равен произведению 1/3 площади основания на высоту пирамиды Т.е. V = S*H/3
S это площадь равностороннего треугольника со стороной 6 и она равна по формуле Герона √(p*(p-6)*(p-6)*(p-6) ) где p - полупериметр т.е. p=9 т.е. площадь основания = 9√3
H - высоту пирамиды найдем из треугольника образованного высотой пирамиды, высотой боковой грани пирамиды к ребру основания и ее проекцией. Проекция это 1/3 высоты правильного треугольника лежащего в основании пирамиды. Если его сторона 6 то высота основания 6*√3/2 Так как угол наклона боковой грани к основанию 60 то в рассматриваемом прямоугольном треугольнике отношение высоты пирамиды к проекции равно тангенсу 60 т.е. √3 Тогда H = (6*√3/2) * √3 = 9 Тогда V = S*H/3 = (9√3 )* 9 /3 =27√3 ответ объем конуса = 27√3
Школы Это интересно Задать вопрос Войти 5АнонимГеометрия27 февраля 10:31 Вычисли градусные меры углов, если сумма двух вертикальных углов равна 116 градусов. Острый угол равен=? °. Тупой угол равен=? °.
ответ или решение1
Решение задачи: Вертикальные углы образуются при пересечении двух прямых. Всего при пересечении двух прямых образуется четыре угла, по два вертикальных. Два вертикальных угла острые и равны между собой. Два угла тупые и тоже равны между собой. Сумма всех этих четырех углов равна триста шестьдесят градусов. 1. Узнаем чему равна сумма двух тупых углов. 360-24=326 градуса. 2. Чему равен один тупой угол? 326/2=163 градусов. 3. Чему равен один острый угол? 24/2=12 градусов. ответ: Острый угол=12 градусов, тупой=163 градуса.
Площадь трапеции равна произведению её высоты на полусумму оснований.
Из свойства параллельных прямых и секущей сумма углов при боковой стороне трапеции равна 180°.
Опустим высоту СН.
В прямоугольном треугольнике СНD угол D=180°-120°=60°
СН=CD•sin60°
S=18•(BC+AD):2=18•8=144 (ед. объёма)