М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации

С, : дано: dabc-пирамида треугольник авс-равнобедренный ас=ав=10, вс=12. каждый из двугранных углов при основании равен 45 найти объем

👇
Ответ:
Если двугранные углы равны между собой (а это углы между высотами боковых граней и плоскостью основания), значит проекции этих высот на основание также равны и, следовательно, высота пирамиды D проецируется в точку О - центр вписанной в основание окружности.
Площадь основания найдем по формуле Герона: S=√[p(p-a)(p-b)(p-c)], где р - полупериметр, а,b, и с - стороны треугольника. S=√(16*6*6*4)=48.
Радиус вписанной окружности найдем из формулы: S=p*r: r=S/p.
В нашем случае r=48/16=3.
Высоту пирамиды найдем из прямоугольного треугольника, образованного высотой пирамиды, радиусом вписанной окружности (катеты) и высотой грани. Острые углы этого треугольника равны 45° (дано), значит высота пирамиды равна радиусу.
Тогда V=(1/3)So*h или V=(1/3)48*3=48.

С, : дано: dabc-пирамида треугольник авс-равнобедренный ас=ав=10, вс=12. каждый из двугранных углов
4,8(31 оценок)
Открыть все ответы
Ответ:
Alina17031
Alina17031
14.11.2021
Проведем из вершины B,C отрезки BE;EC , где точка E пересечение с окружностью. Обозначим точку перпендикуляра BD с   AO G
Получим  четырехугольник ABCE , который вписан  в окружность. 
По теореме Птолемея 64*BE+16*EC=AE*BC, так как   AE     лежит  на центре    , то треугольники  ABE;ACE прямоугольные. 
AE=\sqrt{64^2+EC^2}\\
BC=\sqrt{16^2+BE^2}
Откуда  при подстановке получаем соотношение 
BE*EC=1024
Так как \sqrt{16^2+BE^2}=\sqrt{64^2+(\frac{1024}{BE})^2}\\\\
BE=64\\\\ 
EC=16
Четырехугольник прямоугольник. 
Заметим что BG - высота прямоугольного треугольника 
ABE , тогда 
BG=\frac{16*64}{\sqrt{16^2+64^2}}=\frac{64}{\sqrt{17}}.
Откуда по Теореме Пифагора 
 BG^2+AG^2=16^2\\
AG=\sqrt{16^2-\frac{64^2}{17}}=\frac{16}{\sqrt{17}}\\ , так как  AG является высотой  прямоугольного  треугольника  BAD , то 
 AG=\frac{16AD}{\sqrt{16^2+AD^2}}\\\\
\frac{16}{\sqrt{17}}=\frac{16AD}{\sqrt{256+AD^2}}\\\\ 
\sqrt{256+AD^2}=\sqrt{17}AD\\\\
256+AD^2=17AD^2\\\\
16AD^2=256\\\\
AD=4
 
 тогда CD=64-4=60
  
4,8(94 оценок)
Ответ:
avatariyaflora
avatariyaflora
14.11.2021

1. ABCD - квадрат со стороной 20, а площадь поверхности призмы равна 1760. Sп=2So+Sб или 1760=2*20*20+Sб. => Sбок=1760-800=960. Sбок=4*Sграни => Sграни= 960:4=240. Sграни=сторона основания, умноженная на боковое ребро. Боковое ребро равно 240:20=12.

ответ: 12 ед.

2. ABCD - квадрат. АС=24, АС=BD (диагонали квадрата), DO=12 (как половина диагонали), SD=15. По Пифагору SO=√(SD²-DO²)=√(225-144) =√81 = 9 ед.

ответ: SO=9 ед.

3. Sсеч = 2*R*h = 4 (прямоугольник). Sбок= 2*π*R*h = 4π (боковая поверхность).

ответ: Sбок/π = 4 ед.


1. найдите боковое ребро правильной четырехугольной призмы, если сторона ее основания равна 20, а пл
4,4(90 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ