Для прямоугольного треугольника справедлива теорема Пифагора : квадрат гипотенузы равен сумме квадратов катетов.
Треугольник с заданными сторонами является прямоугольным.
25² = 7² + 24²
625 = 49 + 576 = 625
Пусть коэффициент пропорциональности равен k, тогда пропорциональные стороны треугольника будут 7k, 24k, 25k
(25k)² = (7k)² + (24k)²
625k² = 49k² + 576k² ⇒ 625k² = 625k²
Для треугольника со сторонами 7k, 24k, 25k тоже справедлива теорема Пифагора, значит, треугольник является прямоугольным.
Объяснение:
Мій день. Зазвичай я встаю о 7 годині. Я встаю одразу і іноді роблю ранкову зарядку. Потім я приймаю душ і чищу зуби. Після цього я одягаюся і йду до школи. Я живу недалеко від цього, тому гуляю там. Зазвичай я снідаю в школі. Щодня ми маємо 6 уроків, тож я в школі до 2 години. Потім я йду додому, вечеряю і відпочиваю пару годин. У понеділок, середу та п’ятницю я відвідую танцювальний клуб. Решта мого тижня вільна. Увечері я виконую домашнє завдання і допомагаю батькам, якщо вони запитують мене. Іноді я граю в комп’ютерні ігри чи читаю книги. І звичайно, я спілкуюся з друзями в Інтернеті. Я лягаю спати об 11 годині. Це мій звичайний день.
ответ: √(46/41)
Объяснение:
1. Поиск искомого отрезка
1) BM ⊂ (BSD)
AC ∩ (BSD) = O
Проведём в ΔBMD из точки O перпендикуляр к BM
OH ⊥ BM
2) SO - высота пирамиды. Высота попадёт в точку O, так как пирамида правильная. SO ⊥ (BCD)
Проведём HN, HN || SO ⇒ HN ⊥ (BCD) ⇒ NO - проекция OH на (BCD)
3) HO - наклонная, NO - проекция, AC ⊂ (BCD) ⇒ HO ⊥ AC (по теореме о трёх перпендикулярах)
Таким образом, HO - общий перпендикуляр к прямым AC и BM ⇒ расстояние между AC и BM равно HO
2. Нахождение длины отрезка
HO ⊂ (BSD). Найдём HO из ΔBSD.
1) MD = SD/2 = 5/2
Из ΔABD по теореме Пифагора BD = 2√2, OD = BD/2 = √2 (св-во диаг. квадрата).
Тогда из ΔSOD cos∠SDO = OD/SD = √2/5
2) По теореме косинусов в ΔBMD имеем:
BM² = BD² + MD² - 2BD * MD * cos∠SDO
BM² = 8 + 25/4 - 10√2 * √2/5
BM² = 8 + 25/4 - 4
BM² = 41/4
BM = √41/2
3) sin∠SDO = √(1 - cos²∠SDO) = √(1 - 2/25) = √23/5
SΔBMD = 1/2 * MD * BD * sin∠SDO = 1/2 * 5/2 * 2√2 * √23/5 = √46/2
SΔBMD = 1/2 * BM * KD ⇒ KD = 2*SΔBMD : BM = 2*√46/2 : √41/2 = 2√46/√41
4) В ΔBKD OH || KD, BO = OD ⇒ HO - средняя линия ΔBKD ⇒ HO = KD/2 = √46/√41