50
Объяснение:
1. Найдем длину диагоналей прямоугольника, лежащего в основании пирамиды. По теореме Пифагора:
дм.
AO = AC/2= 100/2 = 5 дм
2. Для наглядности, начертим сечение по плоскости на которой лежит треугольник AKC
По теореме Фалеса (при пересечении угла параллельными прямыми стороны угла делятся на пропорциональные отрезки) видно, что параллельные прямые AK и OM делят AC и KC на пропорциональные отрезки, так как AO=OC=AC/2 (точка O середина диагонали), верно равенство КМ=MC=KC/2.
Аналогично прямые КО и MN делят ONC на равные отрезки
ON=NC
По признаку равенства прямоугольных треугольников, ΔONM = ΔCNM
(по двум катетам).
Вычислим KC по теореме Пифагора:
Далее OM=MC=KC/2 =
Площадь равнобедренного треугольника BMD равна половине произведения основания BD на высоту OM
S BDM = BD*OM =
50
Объяснение:
1. Найдем длину диагоналей прямоугольника, лежащего в основании пирамиды. По теореме Пифагора:
дм.
AO = AC/2= 100/2 = 5 дм
2. Для наглядности, начертим сечение по плоскости на которой лежит треугольник AKC
По теореме Фалеса (при пересечении угла параллельными прямыми стороны угла делятся на пропорциональные отрезки) видно, что параллельные прямые AK и OM делят AC и KC на пропорциональные отрезки, так как AO=OC=AC/2 (точка O середина диагонали), верно равенство КМ=MC=KC/2.
Аналогично прямые КО и MN делят ONC на равные отрезки
ON=NC
По признаку равенства прямоугольных треугольников, ΔONM = ΔCNM
(по двум катетам).
Вычислим KC по теореме Пифагора:
Далее OM=MC=KC/2 =
Площадь равнобедренного треугольника BMD равна половине произведения основания BD на высоту OM
S BDM = BD*OM =
1)Треугольник AOB равен тр-ку COD по 2 сторонам и углу между ними. Т.к они равны, то соотв. элем. равны. Угол OCD равен углу OBA - они накрест лежащие при прямых АВ и CD и сек. ВС. Следовательно, AB ║CD
2)Треугольники OXY и OZY равны по 3 сторонам. Т.к они равны, то соотв. элем. равны. Угол XOY равен углу YZO - они накрест лежащие при прямых OX и YZ и сек. OY. Следовательно, OX ║YZ. Также угол XYO = углу YOZ(из равенства тр-к) - они накрест лежащие при прямых OX и YZ и сек. OY. Следовательно, OZ ║XY
3)Треугольники ROB и SOT равны по стороне и двум прилежащим к ней углам. Т.к они равны, то соотв. элем. равны. Угол BRO = углу STO - они накрест лежащие при прямых RB и ST и сек. BS. Следовательно, RB ║ST. Также треугольники ROS и BOT равны по стороне и 2 прилежащим к ней углам. Отсюда угол SRO = углу BTO - они накрест лежащие при прямых RS и BT и сек. RT. Следовательно, RS ║BT.