Пусть M- cередина АС, N - середина АВ. Продолжим ВМ на расстояние ВМ, получим Q, продолжим CN на расстояние CN, получим Р. Рассмотрим четырехугольник APBC, в нем диагонали РС и АВ точкой пересечения N делятся пополам, значит, это параллелограмм (признак такой), значит АР параллельна ВС (определение параллелограмма). Рассмотрим четырехугольник ABCQ, в нем диагонали AС и ВQ точкой пересечения M делятся пополам, значит, это параллелограмм (признак такой), значит АQ параллельна ВС (определение параллелограмма). Итак, в точке А проведены две прямые АР и АQ, параллельные ВС. По 5 постулату Евклида (аксиома параллельности) через точку вне прямой можно провести единственную прямую, параллельную данной, значит, точки А, Р, Q лежат на одной прямой
1рассмотрим треугольник aoc и треугольник bod: угол aoc = bod (как вертикальные) ao=ob и co=od (по условию,т.к. точка является o - посередине) значит, треугольник aoc = равен треугольнику bod (по двум сторонам и углу между ними) значит угол dao = равен углу cbo(в равных треугольниках против равных сторон лежат равные углы) 2 рассмотрим треугольник abd и треугольник adc: по условию, угол bda = углу adc сторона ad - общая и по условию угол bad = углу dac (т.к. ad - биссектриса) значит, треугольник abd = треугольнику adc(по двум углам и стороне между ними) значит сторона ab=ac(т.к. в равных треугольниках против равных углов лежат равны стороны)
Уравнения:
х=2
у=5
Обе прямые проходят через точку М(2,5)и параллельны осям координат