Если ссылаетесь на рисунок в условии задания, этот рисунок следует приложить.
Но данная задача понятна и без рисунка.
Высоты опущены из одной вершины. В параллелограмме более длинной является та высота, что проведена к стороне меньшей длины.
Площадь параллелограмма равна произведению его высоты на сторону, к которой она проведена.
Раз высота, равная 6, более длинная, она проведена к более короткой стороне.
S=6*9=54
Площадь этого параллелограмма можно найти и произведением другой высоты на большую сторону.
S=h*10
h=S:10
h=54:10=5,4
Находим длину АТ: АТ = 10*(3/5) = 6 см.
В исходной пирамиде SABCD углы в боковых гранях равны по 60 градусов, так как все рёбра равны 10 см.
Находим длины отрезков:
SТ = √(10² + 6² - 2*10*6*cos 60°) = √(100+36-60) = √76 = 2√19 см.
DТ = √(10² + 6²) = √136 = 2√34.
Теперь, используя формулу Герона S = √(p(p-a)(p-b)(p-c)), находим площади боковых граней.
S(AST). p = (10 + 6 +2√19)/2 = (8 + √19) ≈ 12,358899 см.
S = 25,980762 см².
S(DST). p = (10 + 2√34 +2√19)/2 = (5 + √34 + √19) ≈ 15,189851 см.
S = 42,426407 см².
S(АDS). Это правильный треугольник. Его площадь равна:
S = a²√3/4 = 100√3/4 = 25√3 ≈ 43,30127 см².
ответ: Sбок ≈ 25,980762 + 42,426407 + 43,30127 ≈ 111,708439 см².
угол ENF= углу EAC=78, как соответственные при параллельных прямых AC и NK и секущей AE.
угол ANK=180-угол ENF=180-78=102
угол AKN=180-(угол ANK+ угол NAK)=180-(102+39)=180-141=39