В задаче применимо правило: Угол между двумя секущими, проведёнными из точки, лежащей вне окружности равен полуразности мер дуг, лежащих между секущими. ------------------------------- Так как диаметр - это хорда, опирающаяся на дугу, градусная мера которой равна 180°, то полуразность дуг, лежащих между секущими МВ и МС всегда будет меньше 90° См. рисунки. γ = (β – α)/2
Так как по условию xm+yn=5n, тоxm =(5-y)n если x не равно 0, то разделив левую и правую части уравнения на x, получим m =((5-y)/x) n, где ((5-y)/x) какое-то число.
По условию коллинеарности:Два вектора a и b коллинеарны, если существует число не равное нулю n такое, что a = n · b Следовательно, если a и b не коллинеарны то такого числа не существует. А в нашем примере такое число есть (при x не равном 0). Следовательно если x не равно 0, то векторы коллинеарны. А так как по условию они не коллинеарны, то x = 0. Тогда и y = 0. ответ: x = 0 и y = 0
Условие задачи дано с ошибкой: если в основании прямоугольного параллелепипеда квадрат, то диагональ основания составляет с боковой гранью угол 45°, а не 30°. Кроме того, по этим данным невозможно найти высоту прямоугольного параллелепипеда.
Задача встречается в таком виде: Основанием прямоугольного параллелепипеда служит квадрат. Диагональ параллелепипеда равна 12, она составляет угол 30° с плоскостью боковой грани. Найдите объём прямоугольного параллелепипеда.
DB₁ - диагональ прямоугольного параллелепипеда. Угол между прямой и плоскостью - угол между прямой и ее проекцией на эту плоскость. В₁С₁⊥(DD₁C₁), значит DC₁ - проекция диагонали DB₁ на плоскость (DD₁C₁), а ∠B₁DC₁ = 30°.
В задаче применимо правило:
Угол между двумя секущими, проведёнными из точки, лежащей вне окружности равен полуразности мер дуг, лежащих между секущими.
-------------------------------
Так как диаметр - это хорда, опирающаяся на дугу, градусная мера которой равна 180°, то полуразность дуг, лежащих между секущими МВ и МС всегда будет меньше 90°
См. рисунки.
γ = (β – α)/2