Катеты прямоугольного триугольника ровно 9 дм и 12 дм. с вершины прямого угла проведено медиану и высоту. на какие отрезки делится гипотенуза? обчислите
В прямоугольном треугольнике медиана из прямого угла равна половине гипотенузы. Гипотенуза равна √(9²+12²) = √(81+144) = √225 = 15 дм. Поэтому медиана равна m = 15/2 = 7,5 дм. Высота h из прямого угла образует подобные треугольники. Запишем пропорцию: h = (9*12) / 15 =7.2 дм. Обозначим основание медианы точкой М, а высоты - К. Тогда СК = (9*9) / 15 = 5,4 дм. КМ= 7,5-5,4 = 2,1 дм МА = 7,5 дм.
Проведем радиусы от центра окружности О до точек касания В и С. И соедини центр окружности с точкой А. рассмотрим получившиеся треугольники АВО и АСО, в них: угол АВО = угол АСО = 90 гр. (св-во касательных) , следовательно, треугольники АВО и АСО прямоугольные. А чтобы доказать равенство двух прямоуг. треуг-ов достаточно найти 2 равных элемента: - катет ОВ = катет ОС (радиусы окружности) - ОА - общ. гипотенуза из этого следует, что треугольники равны, следовательно все элементы этих треуг-ов равны. а следовательно равны и катеты АС и АВ ч. т. д.
Проведем в равнобедренном треугольнике высоту из вершины треугольника на его основание.Высота в равнобедренном треугольнике является медианой,биссектрисой>высота делит основание на 2 равные части равные 36.Рассмотрим прямоугольный треугольник нам известна гипотенуза(она же сторона равнобедренного треугольника) и основание(оно же является половиной основания равнобедренного треугольника).По теореме Пифагора найдем неизвестную часть треугольника(она же высота в равнобедренном треугольнике) высота^2=39^2-36^2,высота=15 S=(a*h(a))/2=(72*15)/2=540 ответ:540
Гипотенуза равна √(9²+12²) = √(81+144) = √225 = 15 дм.
Поэтому медиана равна m = 15/2 = 7,5 дм.
Высота h из прямого угла образует подобные треугольники.
Запишем пропорцию:
h = (9*12) / 15 =7.2 дм.
Обозначим основание медианы точкой М, а высоты - К.
Тогда СК = (9*9) / 15 = 5,4 дм.
КМ= 7,5-5,4 = 2,1 дм
МА = 7,5 дм.