М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
heartanime
heartanime
13.03.2020 07:34 •  Геометрия

(7 класс) отрезки ab и cd пересекаются. докажите, что ac+bd

👇
Ответ:
foorsik
foorsik
13.03.2020

there are three rooms in my house

4,7(23 оценок)
Ответ:
Daniil201058715
Daniil201058715
13.03.2020

вот так:

there are three rooms in my house

  в доме я имею свою комнату. ,лучшее решение!
4,7(3 оценок)
Открыть все ответы
Ответ:
FarLime
FarLime
13.03.2020

Осевое сечение конуса – равнобедренный треугольник АВС.

АВ=ВС – образующие.

BD– высота конуса, а также высота, медиана и биссектриса равнобедренного треугольника.

О–центр вписанной в треугольник АВС окружности и центр вписанного в конус шара.

ОD=r .

AD=R .

Из прямоугольного треугольника

tg∠OAD = tg(α/2) = r/R . Отсюда r = Rtg(α/2).

ОА– биссектриса угла ВAD, так как центр вписанной в треугольник окружности– точка пересечения биссектрис.

Высота конуса H = R/tg(α/2).

V(шара) = (4/3)πr³ = (4/3)πR³tg³(α/2).

V(конуса)=(1/3)S(осн)·H=(1/3)·πR²·R/tg(α/2) = (1/3)·πR³/tg(α/2).

Разделим V(конуса) на V(шара).

V(конуса) / V(шара) = ( (1/3)·πR³/tg(α/2)) / ((4/3)πR³tg³(α/2)) = 4tg³(α/2)tgα.

ответ: V(конуса) = V(шара) / (4tg³(α/2)tgα).


Угол между образующей конуса и плоскостью его основания равен α. В конус вписан шар, объем которого
4,7(69 оценок)
Ответ:
Anonim223332
Anonim223332
13.03.2020

На рисунке обозначены:

ABC - Основание пирамиды

OS - Высота

KS - Апофема

OK - радиус окружности, вписанной в основание

AO - радиус окружности, описанной вокруг основания правильной треугольной пирамиды

SKO - двугранный угол между основанием и гранью пирамиды (в правильной пирамиде они равны)

Важно. В правильной треугольной пирамиде длина ребра (на рисунке AS, BS, CS ) может быть не равна длине стороны основания (на рисунке AB, AC, BC). Если длина ребра правильной треугольной пирамиды равна длине стороны основания, то такая пирамида называется тетраэдром (см. ниже).

Свойства правильной треугольной пирамиды:

боковые ребра правильной пирамиды равны

все боковые грани правильной пирамиды являются равнобедренными треугольниками

в правильную треугольную пирамиду можно как вписать, так и описать вокруг неё сферу

если центры вписанной и описанной вокруг правильной треугольной пирамиды, сферы совпадают, то сумма плоских углов при вершине пирамиды равна π (180 градусов) , а каждый из них соответственно равен π / 3 (пи делить на 3 или 60 градусов ).

площадь боковой поверхности правильной пирамиды равна половине произведения периметра основания на апофему

вершина пирамиды проецируется на основание в центр правильного равностороннего треугольника,, который является центром вписанной окружности и точкой пересечения медиан

4,7(8 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ