Пусть дан равнобедренный треугольник АВD. Центр вписанной окружности находится в точке О пересечения биссектрис.Значит АО и DО - биссектрисы. Проведем биссектрису ВН. Треугольник равнобедренный, значит ВН является и высотой и медианой. Тогда АН=DН=12:2=6. Касательные из одной точки к окружности равны (свойство). Следовательно, ЕD=DН=CA=AH=6. ВЕ=ВС=18-6=12 и треугольник СВЕ так же равнобедренный. Треугольники СВЕ и АВD подобны, так как сли две стороны одного треугольника пропорциональны двум сторонам другого треугольника и углы, образованные этими сторонами, равны, то такие треугольники подобны (ВС/ВА=ВЕ/ВD и <B - общий). Коэффициент их подобия равен отношению соответственных сторон, то есть СЕ/АD=12/18=2/3. Тогда СЕ=АD*(2/3) или СЕ=12*2/3=8. ответ: СЕ=8.
Пусть дан равнобедренный треугольник АВD. Центр вписанной окружности находится в точке О пересечения биссектрис.Значит АО и DО - биссектрисы. Проведем биссектрису ВН. Треугольник равнобедренный, значит ВН является и высотой и медианой. Тогда АН=DН=12:2=6. Касательные из одной точки к окружности равны (свойство). Следовательно, ЕD=DН=CA=AH=6. ВЕ=ВС=18-6=12 и треугольник СВЕ так же равнобедренный. Треугольники СВЕ и АВD подобны, так как сли две стороны одного треугольника пропорциональны двум сторонам другого треугольника и углы, образованные этими сторонами, равны, то такие треугольники подобны (ВС/ВА=ВЕ/ВD и <B - общий). Коэффициент их подобия равен отношению соответственных сторон, то есть СЕ/АD=12/18=2/3. Тогда СЕ=АD*(2/3) или СЕ=12*2/3=8. ответ: СЕ=8.
x -13 = 29
x = 42
2) (29/42 -a) - 13/42 = 11/42
-a + 16/42 = 11/42
-a = -5/42
a = 5/42
3)15/17-b+3/17=6/17
18/17-b=6/17
b=18/17-6/17
b=12/17
4)29/43-m-13/43=5/43
16/43-m=5/43
m=11/43