ДАЙ ЛУЧШИЙ ОТВЕТ
Диагональ правильной четырёхугольной призмы равна а и образует с
плоскостью боковой грани угол 30°. Найти:
а) сторону основания
призмы.
б) угол между диагональю призмы и плоскостью основания
в) площадь боковой поверхности призмы.
г) площадь сечения призмы плоскостью, проходящей через диагональ основания параллельно диагонали призмы.
В основаниях правильной призмы - правильные многоугольники, а боковые грани - прямоугольники. Следовательно, ее боковые ребра перпендикулярны основанию.
Треугольник ВD1А - прямоугольный (в основании призмы - квадрат, и ребра перпендикулярны основанию.
а) Сторона основания противолежит углу 30°, поэтому АВ=а*sin 30=a/2
б) угол между диагональю призмы и плоскостью основания - это угол между диагональю ВD1 призмы и диагональю ВD основания.
ВD как диагональ квадрата равна а√2):2
cos D1BD=BD:BD1=( а√2):2):a=(√2):2),
и это косинус 45 градусов.
в) площадь боковой поверхности призмы находят произведением высоты на периметр основания:
S бок=DD1*AB= (а√2):2)*4*a/2=a²√2
г) Сечение призмы, площадь которого надо найти, это треугольник АСК.
Если прямая, не лежащая в данной плоскости, параллельна какой-нибудь прямой, лежащей в этой плоскости, то она параллельна самой плоскости. Верным является и обратное утверждение.
Высота КН - средняя линия прямоугольного треугольника BDD1. Она параллельна диагонали призмы, а само сечение проходит через диагональ АС основания.
S Δ(АСК)=КН*СА:2
SΔ (АСК)=(0,5а*а√2):2):2=(а²√2):8
Так как в условии не оговорено положение точки М, будем считать ее серединой любой из сторон треугольника АВС. Приведенное решение только для условия с этим предположением.
Сделаем дополнительные построения: соединим вершину перпендикуляра D с вершинами треугольника АВС. Тогда получится правильная пирамида АВСD с боковыми ребрами DA=DB=DC (так как точка О - центр правильного треугольника АВС, то отрезки DA, DB и DC равны, как наклонные к плоскости, проведенные из одной точки, проекции которых равны - радиусы описанной окружности ).
Соединим точку М с противоположной вершиной С. Тогда МС - высота правильного треугольника АВС и по его свойствам МС - высота и медиана.
Следовательно, точка О делит отрезок МС в отношении 2:1, считая от вершины С. Треугольник DOM - пифагоров и МО=3. Тогда ОС=6, а DC=√(DO²+OC²) = √(16+36) = √52 = 2√13.
Найдем сторону треугольника АВС. МС=МО+ОС = 3+6=9. Из прямоугольного треугольника АМС по Пифагору: МС² = АС²- АС²/4 => 81*4=3*АС² => АС=6√3. Тогда периметр треугольника АВС равен 18√3 ед.
ответ: Рabc = 18√3. AD=BD=DC = 2√13 ед.