АР=ТД= (АД-ВС)/2=3 м Опустим высоту ВР. В ΔАВР ∠АВР=90-60=30°, тогда АВ=2АР=6м (катет в прямоугольном Δ против угла в 30° равен половине гипотенузы) Дальше решим через теорему косинусов: ВР=√(АВ²+АР²-2*АВ*АР*cos60)=√(36+9-2*6*3*1/2)=√27=3√3м. ответ: высота насыпи=3√3м. Вторая задача: если угол при вершине равен 20 градусов, то углы в основании треугольника равны (180-20)/2=80 градусов. Корень из 3 на 2 это синус 60 градусов, 80 градусов больше 60, значит синус угла при основании этого треугольника больше √3/2
Противоположные вершины четырехугольника являются концами отрезков, которые пересекаются, т.е. диагоналей, поскольку диагональ четырехугольника - это отрезок, соединяющий его противоположные вершины. Через две пересекающиеся прямые всегда можно провести плоскость и только одну, т.е. две пересекающиеся прямые всегда принадлежат некоторой плоскости. Если прямая принадлежит плоскости, значит каждая ее точка принадлежит этой плоскости, следовательно вершины четырехугольника лежат в одной плоскости, поскольку принадлежат пересекающимся прямым, которые содердат диагонали четырехугольника.
А=В+20
В+20+В=90
В=35
А=55