Расстояние от точки a до центра o окружности равно 3 см. радиус окружности равен 5см. докажите,что любая прямая,проходящая через точку a,пересекает окружность
d(P,AC) -? Пусть O точка пересечения диагоналей ромба AC и BD (O=[AC] ⋂ [BD] ). Соединяем точка O с точкой P. BO проекция наклонной PO на плоскости ромба. По теореме трех перпендикуляров заключаем , что PO ⊥AC (AC⊥ BO⇒AC⊥ BO). Значит PO и есть расстояние от точки P до диагонали AC, т.е. PO =d(P,AC). Из прямоугольного треугольника (диагонали ромба перпендикулярны) AOB: BO =AB*cos(∠ABO) =c*cosα (∠ABO=(∠ABC)/2 =2α/2=α , диагонали ромба являются биссектрисами углов) . Из прямоугольного треугольника PBO (BP⊥(ABCD)⇒BP⊥ BO) по теореме Пифагора: PO =√(PB² +BO²) =√(p² +(c*cosα)²) .
Высота равнобокой трапеции делит большее основание на отрезки: (13-5):2=4 (см) и 13-4=9 (см) . Высота прямоугольного треугольника, проведенная к гипотенузе-есть среднее пропорциональное проекций катетов на гипотенузу, поэтому квадрат высоты=9*4=36. Значит, высота=6 см. А катет (в данной задаче-это боковая сторона) -есть среднее пропорциональное между гипотенузой и проекцией этого катета на гипотенузу. Значит, квадрат боковой стороны равен 13*4=52, а сама боковая сторона равна корню из 52 или 2 корня из 13 (см).