Объяснение:
1. вектор AB + вектор BD= вектор AC + вектор CD
2. вектор AB + вектор BC= вектор AD + вектор DC
Это правило треугольника сложения векторов: Видим что конец первого вектора совпадает с началом второго. Значит результатом сложения будет вектор, обозначенный первой буквой первого вектора и второй буквой другого вектора:
АВ + ВD = AD, AC + CD = AD
Видим, что результаты сложения совпадают, что и требовалось доказать.
Аналогично и во втором примере:
AB + BC = AC, AD + DC = АС, что и треб. доказать.
АВСD - параллелограмм
1. CA = СВ + ВА = CD + DA
2. DA = DC + CA = DB + BA
1. вектор AB + вектор BC = AC
2. вектор MN + вектор NN = MN
3. вектор PQ+ вектор QR = PR
4.вектор EF + вектор DE = DE + EF = DF
выразите вектор BC через векторы AB и AC:
BC = AC - AB
взята точка D на стороне треугольника ABC. Выразите вектор BD через векторы AB и AD:
BD = AD - AB
Дан параллелограмм ABCD. Найдите разность:
1. вектор AB- вектор AC = CB
2. вектор BC - вектор CD = AB+BC = AC
Дано :
∆АВС — прямоугольный (∠С = 90°).
AD = BD.
АС = 12, CD = 10.
Найти :
S(∆ABC) = ?
Так как D — середина АВ, то CD — медиана ∆АВС (по определению).
В прямоугольном треугольнике медиана, проведённая к гипотенузе, равна её половине.Следовательно, АВ = 2CD = 2*10 = 20.
По теореме Пифагора найдём длину катета СВ :
AB² = AC² + CB²
CB² = AB² - AC² = 20² - 12² = 400 - 144 = 256 => CB = √CB² = √256 = 16.
Площадь прямоугольного треугольника равна половине произведения его катетов.Следовательно, S(∆ABC) = ½*AC*CB = ½*12*16 = 96 (ед²).
96 (ед²).
обозначим один из получившихся треугольников в основании АВС, он прямоугольный по св-ву ромба, уголА=30, значит ВС=1/2АВ=1/2*12=6(см)
по среднему геометрическому СВ=√АВ*СН, СН- высота к АВ, значит 6=√12*ВН, ВН=3
в треугол СНВ, по теор Пифагора СН=√ СВ²-НВ²=√27=3√3
Отсюда, т.к. двугранный угол равен 45, значит треугольник через вершину пирамиды М, треугол МСН - р/б и МС=СН=3√3(см)