Дано: АВСДА₁В₁С₁Д₁ - правильная усеченная пирамида. А₁К=С₁Н=7 см, АВ=ВС=СД=АД=12 см; А₁В₁=В₁С₁=С₁Д₁=А₁Д₁=4 см. Найти АА₁.
АС - диагональ нижнего основания. По теореме Пифагора
АС² = АД² + СД² = 144 + 144 = 288. АС = 12*√2 см.
А₁С₁ - диагональ меньшего основания. По теореме Пифагора
А₁С₁² = А₁Д₁² + С₁Д₁² = 16 + 16 = 32. А₁С₁ = 4*√2 см.
АА₁С₁С - равнобедренная трапеция, где А₁Н и С₁К - высоты.
А₁Н = С₁К = ОО₁ = 7 см.
КН = А₁С₁ = 4√2 см
Прямоугольные треугольники АА₁К и СС₁Н равны по гипотенузе и катету, тогда АК = СН.
АС = КН + 2 АК.
АК = (АС – КН) / 2 = (12√2 - 4√2) / 2 = 4√2 см.
Рассмотрим Δ АА₁К, где АА₁ - гипотенуза. По теореме Пифагора
АА₁² = А₁К² + АК² = 49 + 32 = 81. АА₁ = 9 см.
ответ: 9 см.
Так как точка О - середина диагонали КМ, отрезки КО и ОМ равны. Рассмотрим прямоугольные треугольники АОК и ВОМ. Они имеют равные катеты КО=ОМ по условию и равные острые углы АКО и ВМО - накрестлежащие при параллельных прямых и секущей КМ. ⇒
Эти треугольники равны. ⇒
ВМ=АК=6 см, ВО=АО=3 см, ⇒
МО - медиана треугольника АВМ.
Так как МО⊥ВА по условию, она является и высотой треугольника ВМА. Треугольник, в котором медиана является высотой - равнобедренный. ВМ=АМ. Но по условию и АВ=ВМ, следовательно,
треугольник АВМ - равносторонний, все его стороны равны 6 см. Рассмотрим прямоугольные треугольники ALM и AOM.
Они имеют общую гипотенузу АМ и равные острые углы ОАМ и МАL, т.к. углы ВАМ и ВМА равны как углы правильного треугольника, а углы ВМА и МАL равны, как накрестлежащие.
Следовательно, ∆ МОА=∆ МАL, и АL=3см
Большая сторона прямоугольника равна КА+AL=6+3=9 см