Восновании пирамиды лежит треугольник со сторонами 10, 8,6. боковые ребра наклонены к плоскости основания под углом 45 градусов. найдите площадь полной поверхности.
По условию задачи в сновании находится прямоугольный треугольник, (по квадратам сторон: 6²+8² = 10²). Так как грани наклонены под равным углом к основанию, то проекции рёбер на основание находятся на биссектрисах треугольника основания. Ось пирамиды находится на пересечении биссектрис. Отсюда вывод: высота пирамиды равна радиусу вписанной в треугольник окружности. Радиус вписанной в прямоугольный треугольник окружности равен: r = (a+b-c) / 2 = (6+8-10) / 2 = 2. Тогда и высота Н = 2. а апофема - 2√2. Площадь боковой поверхности пирамиды равна: Sбок = (1/2)Р*r = (1/2)*(6+8+10)*2√2 = 24√2. Площадь основания So = (1/2)6*8 = 24. Площадь полнойповерхности пирамиды равна 24√2 + 24 = 24(1+√2) = 57.94113.
Радиус вписанной окружности: Не трудно заметить что треугольник АВС прямоугольный. по т. Пифагора проверим. BC=√(8²+6²)=10, проверено. r=(a+b-c)/2, где а и b -катеты, с - гипотенуза r=(8+6-10)/2=2
ОК=ОС=2
Так как SO=CO=2 С прямоугольного треугольника SKO(SK=SO√2=2√2
Площадь боковой поверхности это 1/2 * периметр основания* апофема. SK-апофема
Доказать, что АДОЕ - ромб. В тр-ках ДАО и ЕАО АО - общая сторона, нужно доказать, что они равнобедренные. Опустим высоты ОК и ОМ на стороны АВ и АС соответственно. Высоты равны радиусу описанной окружности. В тр-ках АКО и АМО КО=МО, АО - общая сторона и оба прямоугольные, значит они равны , значит ∠КАО=∠МАО ⇒ ∠ДАО=∠ЕАО. Так как ДО║АЕ, а АО - секущая, то ∠ДАО=∠АОЕ и ∠ЕАО=∠ДОА, значит ∠ДАО=∠ДОА и ∠ЕАО=∠ЕОА, следовательно тр-ки АДО и ЕАО равнобедренные и равны (АО - общая, см. выше). Вывод: АД=ДО=ОЕ=ЕА. Доказано.
Доказать, что АДОЕ - ромб. В тр-ках ДАО и ЕАО АО - общая сторона, нужно доказать, что они равнобедренные. Опустим высоты ОК и ОМ на стороны АВ и АС соответственно. Высоты равны радиусу описанной окружности. В тр-ках АКО и АМО КО=МО, АО - общая сторона и оба прямоугольные, значит они равны , значит ∠КАО=∠МАО ⇒ ∠ДАО=∠ЕАО. Так как ДО║АЕ, а АО - секущая, то ∠ДАО=∠АОЕ и ∠ЕАО=∠ДОА, значит ∠ДАО=∠ДОА и ∠ЕАО=∠ЕОА, следовательно тр-ки АДО и ЕАО равнобедренные и равны (АО - общая, см. выше). Вывод: АД=ДО=ОЕ=ЕА. Доказано.
Так как грани наклонены под равным углом к основанию, то проекции рёбер на основание находятся на биссектрисах треугольника основания. Ось пирамиды находится на пересечении биссектрис.
Отсюда вывод: высота пирамиды равна радиусу вписанной в треугольник окружности. Радиус вписанной в прямоугольный треугольник окружности равен:
r = (a+b-c) / 2 = (6+8-10) / 2 = 2. Тогда и высота Н = 2. а апофема - 2√2.
Площадь боковой поверхности пирамиды равна:
Sбок = (1/2)Р*r = (1/2)*(6+8+10)*2√2 = 24√2.
Площадь основания So = (1/2)6*8 = 24.
Площадь полнойповерхности пирамиды равна 24√2 + 24 = 24(1+√2) = 57.94113.