Сторони трикутника дорівнюють 78 см, 75 см, 51 см. знайти площі частин трикутника, на які ділить його бісектриса меншого кута. будь ласка, максимум пояснень. дякую!
Треугольники А0Д и В0С - подобные (уг.В0С = уг.А0Д как вертикальные; уг.СВ0 = уг.АД0 как внутренние накрест лежащие при параллельных прямых АД и ВС и секущей ВД).
Площадь тр-ка ВОС равна S1 = 0,5ВС·Н1
Площадь тр-ка АОД равна S2 = 0,5АД·Н2
При этом Н1:Н2 = к -коэфиициент подобия, а S1 : S2 = к²
S1 : S2 = 0,5ВС·Н1 : 0,5АД·Н2
к² = к· ВС: АД
к = 9/16
Итак, нашли коэффициент подобия.
Из подобия тех же тр-ков следует, что ОВ:ОД = 9/16, но ОД = АС - ОВ и
Для решения этой задачи нужно провести в трапеции две высоты из ее вершин В и С на основание АД. Назовем их ВН и СЕ. Они равны и отсекают на основании АД равные отрезе АН и ЕД так, что основание отрезок НЕ получается равным ВС. Значит, найдя НЕ - найдем и искомое ВС. Так как высоты трапеции мы проводим под прямым углом к основанию АД, то получим прямоугольные равные треугольники АВН и СЕД. Рассмотрим прямоугольный треугольник АВН. В нем угол В равен 60 градусов по условию. Значит, угол АВН равен 90-60=30 градусов. По свойству прямоугольного треугольника, против угла в 30 градусов лежит сторона равная полвине гипотенузы. Тогда АН=АВ:2=10:2=5 см Но АН=ЕД=5 см, отсюда НЕ=АД-(АН+ЕД)=16-(5+5)=6 см ответ: ВС=6 см
Треугольники А0Д и В0С - подобные (уг.В0С = уг.А0Д как вертикальные; уг.СВ0 = уг.АД0 как внутренние накрест лежащие при параллельных прямых АД и ВС и секущей ВД).
Площадь тр-ка ВОС равна S1 = 0,5ВС·Н1
Площадь тр-ка АОД равна S2 = 0,5АД·Н2
При этом Н1:Н2 = к -коэфиициент подобия, а S1 : S2 = к²
S1 : S2 = 0,5ВС·Н1 : 0,5АД·Н2
к² = к· ВС: АД
к = 9/16
Итак, нашли коэффициент подобия.
Из подобия тех же тр-ков следует, что ОВ:ОД = 9/16, но ОД = АС - ОВ и
ОВ: (АС - ОВ) = 9/16
16·ОВ = 9·(АС - ОВ)
16·ОВ = 9·АС - 9·ОВ
25·ОВ = 9·АС
ОВ = 9·АС/25 = 9·18:25 = 6,48
ответ: ОВ = 6,48см