Дано:
∠А = 90°
ВС = 7 см
AD = 10 см
СD = 5 см
Найти:
АВ - меньшая боковая сторона
Поскольку трапеция прямоугольная и ∠А = 90°, то и ∠В = 90° и меньшая сторона трапеции АВ является высотой трапеции
Из вершины С опустим высоту СК на большую сторону AD трапеции.
СК = АВ
Высота СК делит большее основание AD трапеции на два отрезка
АК = ВС = 7 cм и KD = AD - AK = 10 см - 7 см = 3 см
ΔСКD - прямоугольный с гипотенузой CD = 5 cм
По теореме Пифагора
CD² = CK² + KD²
5² = CK² + 3²
CK² = 25 - 9 = 16
CK = 4 (см)
Поскольку АВ = СК, то АВ = 4 см
Меньшая сторона трапеции АВ = 4 см
V=(Sосн*h)/3 - формула расчёта объёма пирамиды
В основании пирамиды лежит квадрат, нам нужно найти его сторону.
Формула, по которой будем расчитывать сторону квадрата: a = d√2/2
Диагональ нам дана по условию, подставляем в формулу, получаем 8√2/2
Сторона квадрата равна 4√2
Теперь рассчитываем площадь по формуле S=a*a
Чему равно a сы нашли, подставляем, получаем 4√2*4√2
Площадь равна 32 кв.дм
И теперь, когда нам известны все данные, остаётся только подставить их в формулу расчёта объёма пирамиды, которую мы писали с самого начала
V=(Sосн*h)/3 =32*(12/3)=32*4=128 дм.куб
1) По теореме, если тебе известны 2 других угла, не смежных с ним, то найди их сумму и вот внешний угол.
2) Если знаешь смежный с ним угол, то от 180 градусов отними этот угол и получишь внешний