М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
semzolotov
semzolotov
22.05.2023 01:29 •  Геометрия

Стороны одного треугольника равны 8 дм,16 дм и 20 дм .периметр подобного ему треугольника равен 55 дм.найдите стороны второго треугольника.

👇
Ответ:
zubiks108642
zubiks108642
22.05.2023

a1=8 дм

b1=16 дм

c1=20 дм

P2=55 дм

a2, b2, c2 - ?

 

P1=8+16+20=44 дм

Коэффициент подобия 55/44= 1,25

 

a2=8*1,25=10 дм

b2=20*1.25=25 дм

с2=16*1,25=20 дм

4,6(71 оценок)
Ответ:

Дано:

a = 8дм

b = 16дм

с = 20дм

P₂ = 55дм

Найти:

a₂, b₂, c₂ - ?

 

1) P = a + b + c = 8 + 16 + 20 = 44дм

2) 55/44 = 1.25дм (P₂ в 1.25 раза > P₁)

3) a₂ = 8 · 1.25 = 10дм

4) b₂ = 16 · 1,25 = 20дм

5) c₂ = 20 · 1,25 = 25дм

 

ответ: 10дм, 20лм, 25дм

4,5(77 оценок)
Открыть все ответы
Ответ:
cheropitan
cheropitan
22.05.2023
1. <CBM=<AMB как накрест лежащие углы при пересечении двух параллельных прямых ВС и AD секущей ВМ. Но <CBM=<ABM, т.к. ВМ - биссектриса, значит <AMB=<ABM, и треугольник АВМ равнобедренный (углы при его основании ВМ равны между собой). 
АВ=АМ.
<CKD=<ADK как накрест лежащие углы при пересечении двух параллельных прямых ВС и AD секущей KD. Но <ADK=<CDK, т.к. DK - биссектриса, значит <CKD=<CDK. Треугольник CKD получается равнобедренным с равными углами при его основании DK. 
CD=CK
Т.к. ABCD - параллелограмм, то АВ=CD. Но мы выше вывели, что АВ=АМ, а CD=CК, значит
АМ=СК
Треугольники АМВ и CKD получаются равны по двум сторонам и углу между ними: АВ=CD, АМ=СК, углы А и С равны как противоположные углы параллелограмма.

2. ВК=ВС-СК, DM=AD-АМ. Поскольку ВС=AD, а СК=АМ (как равные соответственные стороны равных треугольников АМВ и CKD), то ВК=DM. Эти отрезки лежат на параллельных сторонах ВС и AD, значит, они также параллельны. Значит, BKDM - параллелограмм (две стороны равны и параллельны), следовательно, ВМ II DK.  
Впараллелограмме авсd биссектриса угла в пересекает сторону аd в точке м, а биссектриса угла d перес
4,7(34 оценок)
Ответ:
all271
all271
22.05.2023
Геометрическим местом точек Р на плоскости, для которых наклонные АР, опущенные на плоскость из точки А, образуют одинаковые углы, является окружность с центром в точке Н основания перпендикуляра АН, опущенного из этой точки на плоскость. В этом случае для любой точки Р тангенс угла наклона АР к плоскости есть величина постоянная и равна отношению АН/НР, где АН - высота точки А над плоскостью, а НР - радиус окружности с центром в точке Н.  То же самое можно сказать и о геометрическом месте таких точек Р для точки В. Точка Р должна одновременно принадлежать и окружности с центром Н, и окружности с центром К, где К - основание перпендикуляра ВК.
Следовательно, геометрическим местом точек P плоскости α , для которых прямые AP и BP образуют с плоскостью α равные углы, являются точки пересечения двух окружностей с центрами в точках Н и К, для радиусов которых выполняется условие: r/R = BK/AH. Только в этом случае углы наклона прямых ВК и АН к плоскости α будут равны, так как прямоугольные треугольники ВКР и АНР тогда будут подобны по двум катетам.
Чтобы найти искомое геометрическое место, надо решить систему из двух уравнений окружностей:
(X-Xb)²+(Y-Yb)²=r² (1) и (Х-Ха)²+(Y-Ya)²=R² (2).  Решением и будут координаты искомых точек пересечения.
Поместим начало координат в одну из точек: К или Н, например, в точку К. Тогда имеем К(0;0)
Итак, дано: точки А(Хa;Ya) и В(0;Yb), их расстояние от плоскости α H(0;Ya ) и h(0;Yb), расстояние между точками Н(Ха;0) и К(0;0), равное  сумме радиусов R(Xa-Xb) и r(Xb), то есть равное L(Xa) и, наконец, самое важное - коэффициент пропорциональности t, при котором только и будет все работать, равный отношению высот Н и h, а именно: t=Ya/Yb = R/r. Тогда R = r*t.
Напишем уравнения (1) и (2), подставив в них известные нам значения:
X²+Y²=r² (1)
(X-L)²+Y² = r²*t² (2). Решаем методом подстановки. Y²=r²-X².
Тогда (2) примет вид: X²-2LX+L²+r²-X² - r²*t² = 0, или
2LX=L²-r²*(t²-1), откуда
Х = (L²-r²*(t²-1))/2L.
Y = √{r² - [(L²-r²*(t²-1))/2L]².
ответ: геометрическое место точек P(X;Y) плоскости α , для которых прямые AP и BP образуют с плоскостью α равные углы, имеет координаты
Х = (L²-r²*(t²-1))/2L.
Y = √{r² - [(L²-r²*(t²-1))/2L]².
Построим эту кривую по точкам, когда, например, t=2, L=6 и, следовательно, начальное значение r = 2, так как при r<2 окружности общих точек не имеют.
r =2, X=2, Y=0.
r =3, X=0,75, Y=±2,9.
r =4, X=-1, Y=±3,86.
r =5, X=-3,25, Y=±3,8.
r =6, X=-6, Y=0.
r =7, X=-9,25, Y - значения не имеет (иррациональное число).
Значит при r >L окружности общих точек не имеют, следовательно, наше геометрическое место точек P - замкнутая кривая при области определения L/(t+1)=<r<=L.
Рисунок приложен.

Впространстве дано плоскость α и две точки а и в. найдите место точек p плоскости α , для которых пр
4,7(38 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ