1.Дополнительные построения :АН параллельно ВСDК параллельно АН2. <КDA + <EDC=90* (смежные с прямым углом) ] } <EDC = <KAD<KAD + <KDA =90*(по т. о сумме углов треугольника)]3.<EDC = <KAD] } Треугольники АКD и DEC - подобны, из чего следует, что <AKD = <DEC ] k( коэффициент подобия) = AD/DC=AK/DE=2/3AK=DE*k=9*2/3=6KHED- прямоугольник ( все углы прямые) }KH+DE=9AH=AK+KH=15Sabc=AH*BC/2 } BC= 2*Sabc/AH=60/15=4 ответ : 4 см
Построим сумму векторов а и b и их разность. ↑АС = ↑р = ↑а + ↑b ↑DB = ↑q = ↑a - ↑b Чтобы найти угол между векторами p и q, построим вектор, равный вектору q, с началом в точке А. ∠ЕАС - искомый. Из ΔABD найдем длину вектора q по теореме косинусов: |↑q|² = AB² + AD² - 2·AB·AD·cos60° = 25 + 64 - 2·5·8·1/2 = 89 - 40 = 49 |↑q| = 7 Сумма углов параллелограмма, прилежащих к одной стороне, равна 180°, значит ∠АВС = 120°. Из ΔABС найдем длину вектора р по теореме косинусов: |↑p|² = AB² + BC² - 2·AB·BC·cos120° = 25 + 64 + 2·5·8·1/2 = 89 + 40 = 129 |↑p| = √129
Из ΔЕАС по теореме косинусов: cos α = (AE² + AC² - EC²) / (2 · AE · AC) cos α = (49 + 129 - 256) / (2 · 7 · √129) = - 78 / (14√129) = - 39√129 / 903 cos α = - 13√129/301